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Abstract12

A secondary zone of surface uplift (SZU), located ∼300 kilometers landward of the13

trench, has been measured after several megathrust earthquakes. The SZU reached14

a few centimeters hours to days after the 2011 Mw 9.1 Tohoku (Japan) and 201015

Mw 8.8 Maule (Chile) earthquakes. Published coseismic finite-fault models for these16

events do not reproduce the measured SZU. One interpretation is that this SZU is17

universal, driven by volume deformation around the slab interface (van Dinther et al.18

2019). In contrast, we demonstrate the SZU may instead result from slip on the slab19

interface. Further, we suggest the SZU could be caused by rapid postseismic afterslip.20

We can reproduce the SZU with fault slip if elastic heterogeneities associated with the21

subducting slab are accounted for, as opposed to assuming homogeneous or layered22

elastic lithospheric structures.23

Plain Language Summary24

Large earthquakes in subduction zones induce displacement of the ground surface,25

which usually include large amplitude uplift offshore, transitioning to a mild region26

of subsidence further inland. After the largest instrumented earthquakes, such as27

the 2011 Mw 9.1 Tohoku (Japan), the 1960 Mw 9.5 Valdivia (Chile) and 1964 Mw28

9.2 Alaska earthquakes, a secondary zone of uplift (SZU) is detectable even further29

inland. The origin of this SZU remains enigmatic, but one interpretation is that it30

derives from deformation of the volume around the subducting fault (van Dinther et31

al. 2019). In this study, we investigate alternate interpretations of its origin. A simple32

slip model with realistic variations in crustal elastic properties allows one to reproduce33

the secondary zone of uplift. We then focus on the 2010 Mw 8.8 Maule (Chile) event,34

for which some measures of the SZU peaked at 12 cm. Unlike previously published35

studies, we can reproduce the SZU with on-fault displacement, located significantly36

deeper than the region of estimated coseismic slip. This deep slip likely occurred in37

the hours after the earthquake.38

1 Introduction39

Simple models of subduction zone thrust earthquakes based on a single dip-slip40

dislocation embedded in an elastic half space produce a large surface uplift in near field,41

and a zone of small amplitude subsidence that slowly tapers to zero in the far field42

(Fig. 1a, primary slip patch, e.g., Savage, 1983). Vertical displacements measured after43

most subduction earthquakes follow a similar pattern. However, some far field geodetic44

measurements of megathrusts earthquakes (Mw >8) detect a coseismic secondary zone45

of uplift (referred to as SZU in the text) a few hundred kilometers landward of the46

trench (for a summary, see van Dinther et al., 2019). In the years following the 196047

Mw 9.5 Valdivia and 1964 Mw 9.2 Alaska earthquakes (e.g., Plafker & Savage, 1970;48

Kanamori, 1970), uplifts of more than 1 m and 30 cm in amplitude, respectively,49

were measured in this secondary zone. After the 2010 Mw 8.8 Maule and 2011 Mw50

9.0 Tohoku earthquakes, a few centimeters of secondary uplift were recorded in some51

datasets in the days to weeks following the mainshock. For the Maule event, the SZU52

has been measured by survey Global Navigation Satellite Systems (GNSS) and is not53

observed on other datasets (continuous GNSS, or Interferometric Synthetic Aperture54

Radar, InSAR, e.g., Vigny et al., 2011; Xiong et al., 2022, Fig. 1c). For the Tohoku55

earthquake, continuous GNSS, and possibly InSAR, recorded the SZU (e.g., Ozawa56

et al., 2011; Hu et al., 2013). Whether this uplift is coseismic or rapid postseismic is57

unknown at this time.58

The origin and consistency of the SZU remains ambiguous. None of the published59

coseismic slip models of the 2010 Maule event reproduce simultaneously the horizontal60

deformation, the near-field vertical displacements and the SZU (Fig. 1c shows a selec-61
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Figure 1. Synthetic and observed trench perpendicular profiles of vertical surface displace-

ments. (a) Vertical surface displacement induced by a ∼40-km-deep primary slip patch, by a

secondary downdip patch (∼ 90-km-depth), and the sum of the two. The zoomed inset (c) shows

that the sum of these two patches induces a ∼10 cm secondary zone of uplift ∼250 km from the

trench. (b) Cross section of the synthetic subduction zone, with the location of the primary and

downdip slip patches. (d) Co-seismic static vertical displacement measured by survey and con-

tinuous GNSS for the 2010 Mw 8.8 Maule earthquake for profile A (3 near-trench points are from

profile B to mimic (a)), and predictions from several published models. Location of the profiles

are in Figs S1 and 5, data from Vigny et al. (2011). The name of cGNSS stations is indicated.

Note that at cGNSS station MAUL, only 5 mm of uplift has been measured. (e) The zoomed

inset shows the inability of published finite fault slip models to explain the measured secondary

zone of uplift. Predictions from Delouis et al. (2010); Luttrell et al. (2011); Pollitz et al. (2011);

Lin et al. (2013) have been produced using models from the SRCMOD database (Mai & Thing-

baijam, 2014); others have been reproduced from published material (Yue et al., 2014; Lorito et

al., 2011; Langer et al., 2020; Moreno et al., 2012). Note that these models were derived using

different datasets (sometimes including only a subset of the data shown here). Location of the

profile, data and other trench-perpendicular profiles are shown in Fig. S1. Vertical bars indicate

measurement errors, which are often of ∼10-20 mm and therefore smaller than the size of the

dot.
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tion of published slip models, see enclosed references). Similarly, none of the published62

coseismic slip models for the 2011 Tohoku earthquake explain the observed SZU (e.g.,63

Lay, 2017), whose amplitude is less than a twentieth of the near-field vertical displace-64

ment. Note that, for these two events, >1-year-postseismic SZU can be modeled with65

afterslip or viscoelastic processes (e.g., Klein et al., 2016; Ichimura et al., 2016; Li66

et al., 2017; Agata et al., 2019; Peña et al., 2020). But classic elastic dislocation or67

elastic/viscoelastic rebound models fail to predict any coseismic SZU (van Dinther et68

al., 2019). van Dinther et al. (2019) propose that the SZU is universal, coseismic, and69

that is is the result of an elastic rebound of the lithosphere and an upward elastic flow70

in the mantle wedge.71

While a single patch of fault slip cannot produce a SZU at the surface, an addi-72

tional downdip patch potentially can (Fig. 1a). We should expect that a finite-fault73

model could infer a downdip slip patch to explain any observed SZU. However, existing74

published slip models do not.75

In the following, we investigate under which assumptions the SZU can, or cannot,76

be predicted with fault slip. We begin by considering that the SZU is coseismic by77

default. We explore the effect of assuming homogeneous crustal velocities or a stiffer78

subducting slab, and more compliant forearc, on predicted surface displacements. We79

first investigate the effect of 3D elastic heterogeneities for a synthetic subduction case.80

Then, we focus on the Maule event, for which the SZU likely reaches a few cm and could81

not be reproduced (Fig 1c) even with added complexity in crustal properties: curved82

and deeper slab geometries, topography, heterogeneous crustal elastic properties, etc83

(Lin et al., 2013; Moreno et al., 2012; Langer et al., 2020). While we do not discard84

the possibility that the SZU might be affected by deformation of the volume around85

the slab interface, we show it may simply be the result of slip on this interface. We86

end with a discussion of the geodetic datasets that have recorded the SZU for the the87

2010 Mw 8.8 Maule and 2011 Mw 9.0 Tohoku earthquakes, and discuss the timing of88

the SZU relative to the mainshocks.89

2 A synthetic example: secondary zone of uplift caused by downdip90

slip91

We begin by designing a synthetic subduction zone, where the lithosphere is92

divided in domains of different elastic properties, generic trench-perpendicular topo-93

graphic variations and a curved slab interface whose architecture varies slightly along94

strike (Fig. 2f). This subduction zone is characterized by a stiff plunging slab over-95

lain by a compliant oceanic crust; the continental domain consists of a 35-km-thick96

crust, more compliant than the underlying mantle whose density increases with depth97

(domain properties detailed in Suppl. Mat. Text S2, Tab. S1, Figs S2, S3). We apply98

slip on a limited region of the slab interface (Fig. 1b). Because of the inhomogeneous99

elastic structure, we rely on a finite element approach (Pylith, Aagaard et al., 2013)100

to calculate surface displacements.101

We first compare the strain produced by a ∼40-km-deep slip patch on the as-102

sumed fault, embedded either in a model with 3D variations of elastic properties or103

with a layered crust (Fig. 2). The layered crust replicates the continental domain of its104

3D counterpart and does not incorporate variations in topography (Fig. 2g). Relative105

to the layered elastic models, the 3D-heterogeneous models produce a primary zone of106

subsidence (150-200 km from the trench) that is smaller in amplitude and tapers to107

zero closer to the trench. In the region of primary subsidence, the impact of elastic108

heterogeneity is ∼5 times larger for vertical displacements than for horizontal ones109

(Figs 2, S4, 25% of peak amplitude versus 5% respectively).110
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Figure 2. Displacements produced by a ∼40-km-deep slip patch on a slab embedded in a

3D lithosphere or a layered crust. (a) Trench-perpendicular profiles of surface displacements.

(b,d) and (c,e) Trench-perpendicular cross-sections of upward and eastward displacements for the

elastic properties shown in (f) and (g), respectively.

–5–



version submitted in Geophysical Research Letters

Figure 3. Synthetic example: (a) Target slip and surface displacements. (b,c) Inferred slip

and surface displacement assuming incorrect lithospheric structure, either with a layered crust

(b) or with 3D-varying elastic properties, shown in (d). Gray shading is the standard deviation of

the inferred slip (Fig. S5). In (b) and (c), the assumed fault replicates the true geometry shown

in (a), but extends to greater depths. In (c), uncertainties in elastic properties are accounted

for: Note the difference in the spatial distribution of posterior uncertainties. (d) Assumed 3D

elastic properties, µ0=52 GPa, which differ from the properties used to calculate synthetic obser-

vations (displayed in Fig. 2f). (e) Trench perpendicular profile of the target synthetic data and

predicted vertical displacements (at 0-km-along-strike). Vertical error bars indicate the posterior

uncertainty. Predictions in light red are for the model shown in Fig. S9.
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We then assume two slip patches, the primary patch peaks at 17 m of slip while111

the secondary downdip patch has 3.5 m of slip (Fig. 1b). We here consider every112

slip is coseismic. With the heterogeneous elastic model, we calculate the induced113

displacement offsets at 50 locations randomly distributed at the surface, to which we114

add two E-W profiles. The profiles mimic the spatial distribution of the GNSS data115

of the Maule event (Fig S1, Vigny et al., 2011). Induced displacements reproduce the116

∼15-cm-uplift measured 250-300 km away from the trench after the Maule earthquake117

(Figs 1a and d, S1). We add white and spatially correlated noise to these synthetic118

data, and try to recover the target slip patches assuming the correct fault geometry119

(with larger subfaults) and an elastic structure that is different from the one used120

to calculate synthetic surface displacements. The assumed structure is either layered121

(Fig. 2g), or with 3D variations (Fig. 3d). We use a Bayesian sampling approach to122

infer fault slip from the synthetic displacement (detailed in Suppl. Mat. section S1,123

Minson et al., 2013).124

When the crust is assumed layered (or homogeneous), the secondary uplift cannot125

be fit (and is not within posterior uncertainty, Fig. 3a,c, Fig. S6, respectively). Relative126

to the model with heterogeneous elastic properties, a layered crust produces wider127

and larger primary zone of subsidence, while the horizontal displacements are only128

slightly impacted (Fig. 2). The amount of slip required to explain the horizontal129

displacements is incompatible with the slip required to explain the vertical ones. Most130

inversions typically favor fitting the horizontal measurements, since they are larger131

and usually more certain. Some downdip slip is imaged, as required by the horizontal132

displacements, if the fault is deep enough. Assuming a fault model that is too shallow,133

and/or subject to unphysical spatial smoothing, can prevent resolution of the downdip134

patch (Fig. S7). The SZU can be produced with incorrect inferred slip, and to the135

detriment of the fit to the horizontal displacements, if assuming very low measurement136

errors for the vertical displacements only (1 mm, i.e. very strongly favoring their fit)137

and a fault geometry that extends to great depths (Fig. S8).138

In contrast, adopting a relatively realistic crustal structure (e.g., with 3D het-139

erogeneities in elastic properties for a typical subduction zone, even if the properties140

are imperfectly known, detailed in Tab. S2), allows one to reproduce the SZU, and141

to recover the downdip slip patch (Fig. 3b,c). Accounting for uncertainties in elastic142

properties (following the methodology presented in Ragon & Simons, 2021, Fig. 3c,d)143

improves the fit to the data. The main annoyance in assuming heterogeneous crustal144

elastic properties for slip inference is the computational burden. With this simple145

synthetic example, we show that a SZU can be produced by downdip slip on the slab146

interface by accounting for 3D variations in elastic properties.147

3 Recovering the secondary uplift of the 2010 Mw 8.8 Maule earth-148

quake149

The results of our synthetic example suggest that assuming a realistic crustal150

structure when imaging coseismic slip for the Maule and Tohoku earthquakes may allow151

one to reproduce the measured SZU. We choose to explore the 2010 Chile earthquake,152

as the measured SZU shows a larger amplitude that should be easier to reproduce. It153

is important to note that the SZU for the Maule event only shows on survey GNSS154

measurements (Vigny et al., 2011, Fig. 1), and is very mild ot not discernible on155

continuous GNSS (5 mm uplift at station MAUL, Fig. 1) or InSAR data (e.g., Xiong156

et al., 2022). In this section, we assume the observed SZU is real, but we discuss this157

assumption in section 4. We solve for the slip distribution and amplitude using the158

GNSS data from Vigny et al. (2011), completed by a few far field data from Lin et al.159

(2013).160

–7–



version submitted in Geophysical Research Letters

Figure 4. The 2010 Mw 8.8 Maule earthquake: (a) inferred coseismic slip model as well as

observed and predicted surface displacements, assuming a 3D crustal structure and accounting

for related epistemic uncertainties. Grey shading indicates the standard deviation of the inferred

slip (Fig. S15). (b) Trench perpendicular profile (profile A) of measured and predicted vertical

displacements (without data at MAUL station), for the slip model shown in (a), and a slip model

inferred assuming an homogeneous crustal structure (Fig. S12). Vertical error bars indicate the

posterior uncertainty and data errors. (d) Same as (b) for eastward surface displacements. (c)

and (e) Zoomed inset on the SZU region.
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We build a realistic crustal model for the calculation of the Green’s functions161

(Figs S10, S11, slab geometry from Slab2, elastic properties from LITHO1.0, topogra-162

phy from ETOPO1, Hayes et al., 2018; Pasyanos et al., 2014; NCEI, 2008). While more163

detailed velocity models and datasets are available, our goal is to explore the secondary164

uplift, not to image the slip in detail. We also account for potential uncertainties in the165

assumed fault geometry and elastic properties (following the methodology presented in166

Ragon & Simons, 2021). Uncertainties in fault geometry are calculated by varying the167

dip of the assumed slab geometry while keeping the location of the trench and elastic168

properties fixed. Note that changing the fault geometry to fit the SZU has already169

been attempted by several authors (Lin et al., 2013; Langer et al., 2020), without170

success, and therefore the uncertainties in fault geometry have a limited role to play171

here.172

The inferred slip model reproduces the SZU (Fig. 4). We image a primary zone173

of fault slip in most of the offshore region, with a large uncertainty of 2-to-4 m in174

average (and up to 10 m in the near-trench domain, Fig. S15). Downdip of this175

primary region of slip, at ∼90-km-depth, we infer a well-constrained slip zone with an176

amplitude of 2.5-3 m, equivalent to Mw=7.2, which is responsible for the secondary177

uplift. Models assuming a layered or homogeneous crust do not image this downdip slip178

and do not reproduce the SZU (Fig. 1c and enclosed references, Figs S12, S13, S14).179

Models assuming an heterogeneous elastic structure, but neglecting related epistemic180

uncertainties, are able to reproduce the SZU albeit not as well as when epistemic181

uncertainties are accounted for (Figs S13, S14).182

Our results suggest that previously published models for the Maule earthquake183

were not able to reproduce the SZU (Fig. 1c) because most of them were inferred as-184

suming a layered crust. While Moreno et al. (2012) assumed 3D heterogeneous elastic185

properties, the shallow fault geometry they used and the impact of spatial regulariza-186

tion likely prevented a downdip patch to be imaged. Note that some authors do infer187

downdip slip as required by horizontal displacements (e.g., Delouis et al., 2010; Vigny188

et al., 2011; Bedford et al., 2013; Yue et al., 2014), but that the inferred slip could not189

cause a SZU for the same reasons (as shown in our synthetic example, Fig. 3a). The190

combined effect of strong assumptions on the crustal elastic structure and fault geom-191

etry, and the common use of unphysical regularization (e.g., Ortega-Culaciati et al.,192

2021), probably prevented published models from producing the mild secondary uplift193

of the Tohoku earthquake (while, similarly to the Maule earthquake, some authors do194

infer downdip slip as required by horizontal displacement, e.g., Periollat et al., 2022).195

4 What is the secondary zone of uplift?196

That we image downdip slip does not mean slip is uniquely the cause of the SZU.197

Challenges in modeling highly disparate time-scales (from seconds to years) prevent198

van Dinther et al. (2019) from confirming the universal process they invoke is coseismic,199

rather than lasting several weeks after the mainshock. In contrast, while the potential200

influence of volume deformation cannot be ruled out, the hypothesis that downdip201

slip caused the SZU seems straightforward. For the 2010 Maule earthquake, we infer202

downdip slip at ∼90-km-depth, where only a few aftershocks occurred, none with203

Mw > 6 (Rietbrock et al., 2012; Lange et al., 2012). Such depths are generally204

believed to be relatively aseismic (Lay et al., 2012; Obara & Kato, 2016). Moreover,205

in south-central Chile intermediate-depth seismicity is relatively sparse (Fig. 5 Ruiz &206

Madariaga, 2018) We conclude that the downdip slip we image (equivalent Mw=7.2)207

is likely aseismic in nature, and therefore postseismic.208

The SZU observed after megathrust earthquakes other than the Maule event is209

located 300 km from the trench in Chile, 350 km in Japan, and 400 km in Alaska (van210

Dinther et al., 2019). Assuming that the SZU finds its origin in slip downdip of the211
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Figure 5. GNSS coseismic vertical offsets (a,b) and times series (c,d,e) for the 2011 Mw 9.1

Tohoku (Japan, a,e) and the 2010 Mw 8.8 Maule (Chile) earthquakes (b,c,d). The gray area

corresponds to the location of the potential rapid afterslip at the origin of the SZU. (a) Daily

coseismic vertical offsets calculated from non-detrended time series (processed by Periollat et

al., 2022). (b) Coseismic vertical offsets from survey GNSS or daily solutions (from Vigny et al.,

2011). Continuous GNSS stations MAUL and ANTC are circled in black. Slab depths contours

are overlayed. (c) Detrended vertical daily time series (meters) at the SZU location (from Klein

et al., 2022); (d) is a zoomed inset around the mainshock. (e) Non-detrended daily vertical time

series (meters) at selected locations in the SZU (from Periollat et al., 2022). For (c), (d) and (e),

standard deviation is plotted as a vertical gray bar.
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coseismic rupture, because of the various slab geometries, the downdip slip would have212

consistently occurred at ∼90-120-km-depth. Following the same arguments as for the213

Maule earthquake,, the slip that caused the SZU would therefore be postseismic. For214

the 1960 Mw 9.5 Valdivia and 1964 Mw 9.2 Alaska earthquakes, leveling data measured215

a few months to years after the mainshocks will probably contain a large postseismic216

component (e.g., Plafker & Savage, 1970; Plafker, 1965; van Dinther et al., 2019). In217

contrast, that coseismic geodetic data for the Maule and Tohoku earthquakes recorded218

the SZU would suggest it has been produced by early afterslip (hours to weeks after219

the mainshock), signal of which is often included in coseismic geodetic offsets.220

For the Maule earthquake, the SZU is only recorded by survey GNSS, which221

were acquired several days to weeks after the mainshock (Vigny et al., 2011, same ref-222

erence for coseismic data description below), and therefore contain some postseismic223

signal. 3D displacement fields extracted from InSAR data also contain some postseis-224

mic deformation and show, in the SZU location, from -50 to +20 cm of vertical offset225

depending on the approach used (Xiong et al., 2022); and are therefore not reliable226

to investigate the SZU. At two continuous stations located in the region of the SZU227

(MAUL and ANTC, Fig. 5), coseismic vertical offset measured from the difference of228

positions the day before and after the mainshock is of 5±9 and -16±11 mm, respec-229

tively. Estimated offsets at collocated survey stations (CT70 and LLA0, Fig. 5) reach230

102±14 and 120±13 mm. Such difference would indeed suggest that the ∼10 cm SZU231

has been caused by afterslip in the weeks following the mainshock. However, daily232

time-series estimated at the same continuous GNSS station do need two years to reach233

10 cm uplift (MAUL and ANTC, Fig. 5, Klein et al., 2022).234

Unlike continuous GNSS data, coseismic survey offsets published by Vigny et al. (2011)235

were calculated by extrapolating interseismic velocities over 10 years. Interseismic236

velocity estimates have been derived from the few measurements available (only 3237

data points in 1996, 1999 and 2002, e.g., Ruegg et al., 2009). Additionally, daily time238

series at MAUL and ANTC (Fig. 5) show non-negligible seasonal variations (>20 mm239

in amplitude), that have likely altered the sparse interseismic velocity measurements.240

At the SZU location, the combination of small and uncertain interseismic rates with241

small coseismic amplitudes thus makes the errors on survey vertical offsets larger than242

those on continuous data.243

The large data errors on survey GNSS vertical offsets and the sparsity of continuous244

GNSS data make the apparent contradiction between estimated offsets difficult to245

resolve. This contradiction further suggests that the SZU did not reach 10 cm in246

amplitude in the few days to months after the mainshock. However, the possibility247

of a few cm rapid postseismic SZU in the hours following the mainshock cannot be248

discarded without a detailed analysis of times series with a rate higher than 1 day249

(Fig. 5d).250

For the Tohoku earthquake, up to 44±20 mm of uplift in the SZU location (Ozawa251

et al., 2011) is measured for offsets estimated by subtracting the average positions for252

the period between 2 days and 6 hours before the mainshock from the positions 3 hours253

after the mainshock. Early afterslip offsets, estimated from the difference between254

positions 3 hours before and 14 days after the mainshock by Ozawa et al. (2011) show255

up to 50±20 mm uplift in the far field, but not necessarily at the same locations as256

the coseismic offsets. Periollat et al. (2022) processed daily time series that also show257

up to 45±5 mm uplift in the 1 to 3 days following the mainshock (Fig. 5). While some258

daily positions could suggest a 3-days transient postseismic uplift (Fig. 5), the vertical259

component of their 30-s time series has a poor signal to noise ratio and cannot be260

exploited. Finally, 3D displacement field derived from InSAR data do reproduce some261

far-field uplift, but is not independent from measured GNSS offsets (Hu et al., 2013).262
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We demonstrate that the SZU is likely caused by downdip afterslip happening263

in the hours following the mainshock. While, for the Maule earthquake, the SZU264

remains ambiguous as only two continuous GNSS stations might have recorded the265

corresponding signal, the SZU is clearly measured in the days after the Tohoku earth-266

quake. Any further conclusion cannot be made without a thorough examination of267

early postseismic GNSS time series, what is beyond the scope of this study.268

5 Discussion and conclusion269

A secondary zone of uplift (SZU) has been observed after several megathrust270

earthquakes. In this study, we investigate if (and which) assumptions in the foward271

and/or inverse approach could prevent the SZU to be reproduced with slip on the slab272

interface. We show that neglecting variations in elastic properties due to the plunging273

slab induces an incompatibility in the amount of slip required to explain the measured274

horizontal, or vertical, displacements, preventing models from reproducing the SZU.275

In contrast, we demonstrate that assuming realistic heterogeneous elastic properties,276

a sufficiently deep fault geometry, and discarding any non-physical regularization of277

the inverse problem, we infer the SZU as caused by slip downdip of the main coseismic278

rupture.279

Inconsistencies in the fit to vertical versus horizontal measurements have already280

been discussed for various subduction zones and processes. For instance, Klein et al.281

(2018) report an inconsistency in the amount of slow slip needed to fit horizontal ver-282

sus vertical observations a few hundreds of km from the trench. Some postseismic slip283

models of the Maule event (e.g., Lin et al., 2013), or synthetic tests performed for an284

infinitely long megathrust (Hsu et al., 2006), report similar inconsistencies. It is com-285

mon practice to discard or down-weight vertical data because of such inconsistencies286

and larger measurement errors. We show that by accounting for heterogeneities in287

elastic structure, we can reconcile vertical and horizontal observations.288

With synthetic tests and a study of the 2010 Mw 8.8 Maule earthquake, we sug-289

gest that the SZU is likely caused by deep afterslip happening within the first hours290

following the mainshocks. For both the Maule and 2011 Mw 9.1 Tohoku earthquakes,291

the ambiguity of the SZU measurements highlights the difficulty to accurately eval-292

uate the contribution of very early deformations occurring after large earthquakes293

(Twardzik et al., 2019). Our results advocate for the study of the postseismic phase as294

early as possible after the mainshock, as already emphasized by several authors (e.g.,295

Twardzik et al., 2019; Ragon et al., 2019; Jiang et al., 2021).296

While the occurrence of very early deep afterslip (hours after the mainshock,297

∼100-km-deep) remains to be further investigated, it is coherent with a rate strength-298

ening frictional behavior of the megathrust. For instance, numerical simulations of299

Muto et al. (2019); Barbot (2020) showed that stress-driven aseismic afterslip can300

occur at great depths (60-100-km-depth) by considering rate-and-state friction laws.301

Alternatively, viscous flow could also explain such early postseismic deformation (e.g.,302

Montési & Hirth, 2003). Mallick et al. (2022) shown that power-law viscous flows are303

of greater amplitude at shorter time-scales for large earthquakes, what might explain304

why the SZU has only been observed for megathrust earthquakes. Rapid viscous flow305

is coherent with longer-term viscoelastic relaxation invoked for both the Maule and306

Tohoku earthquakes (e.g., Klein et al., 2016; Peña et al., 2020, 2021; Agata et al.,307

2019; Sun et al., 2014; Luo & Wang, 2021), but the similarity of surface displacements308

produced by afterslip or viscous flows prevents, at this stage, discriminating potential309

processes driving the SZU (e.g., Weiss et al., 2019; Mallick et al., 2022).310
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