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S U M M A R Y
Earthquake source estimates are affected by many types of uncertainties, deriving from ob-
servational errors, modelling choices and our simplified description of the Earth’s interior.
While observational errors are often accounted for, epistemic uncertainties, which stem from
our imperfect description of the forward model, are usually neglected. In particular, 3-D varia-
tions in crustal properties are rarely considered. 3-D crustal heterogeneity is known to largely
affect estimates of the seismic source, using either geodetic or seismic data. Here, we use a
perturbation approach to investigate, and account for, the impact of epistemic uncertainties
related to 3-D variations of the mechanical properties of the crust. We validate our approach
using a Bayesian sampling procedure applied to synthetic geodetic data generated from 2-D
and 3-D finite-fault models. We show that accounting for uncertainties in crustal structure
systematically increases the reliability of source estimates.

Key words: Inverse theory; Probability distributions; Earthquake source observations.

1 I N T RO D U C T I O N

We rely on inferences of subsurface fault slip to provide important
insights after major earthquakes. More generally, we often use these
images to explore the physics of the seismic source as well as post-
seismic phenomena. We thus need these inferred images to be as
accurate as possible, but we also need to be able to describe their
limits.

Source estimates are constrained by the quality and quantity of
observations, but are also severely impacted by the way we build
the forward model and by any other prior information we include
in the problem. Many authors have demonstrated that any change
in the characteristics of the forward model (which include source
parametrization but also description of the Earth’s interior) may
lead to variations in the inferred source properties (e.g. Beresnev
2003; Hartzell et al. 2007; Yagi & Fukahata 2008; Hsu et al. 2011;
Duputel et al. 2014; Razafindrakoto & Mai 2014; Gallovič et al.
2015; Diao et al. 2016; Mai et al. 2016). Yet, our understanding of
Earth’s interior structure will always remain uncertain, and thus will
always be susceptible to include biases in inferred source properties.

One obvious way to limit the biases deriving from our imperfect
description of the Earth is to make the description as close as pos-
sible to the reality. Many authors thus describe the crustal structure
as horizontally layered to evaluate the deformation induced at the
surface using simple and efficient methods (e.g. Sato 1971; Sato &
Matsu’ura 1973; Jovanovich et al. 1974; Virieux 1986; Pan 1999;
Zhu & Rivera 2002). Yet, the uncertainties in elastic properties
within each layer have been shown to significantly impact source
models (e.g. Savage 1987; Cattin et al. 1999; Wald & Graves 2001;
Simons et al. 2002; Masterlark 2003; Hearn & Bürgmann 2005;

Schmalzle et al. 2006; Hartzell et al. 2007; Duputel et al. 2014;
Razafindrakoto & Mai 2014).

Crustal structure is usually more complex than just horizontally
layered. In subduction zones, for example, interfaces are probably
not horizontal. Seismic faults can border sedimentary basins and act
as interfaces between regions with vastly different elastic properties.
Similarly, significant velocity contrasts can be observed across and
along major strike-slip faults such as the North Anatolian Fault
(Turkey) or the San Andreas Fault (CA, USA, e.g. McGuire & Ben-
Zion 2005; Ozakin et al. 2012; Najdahmadi et al. 2016; Share &
Ben-Zion 2016; Zeng et al. 2016; Qiu et al. 2017; Share & Ben-Zion
2018; Agostinetti et al. 2020). Faults can also be surrounded by a
highly fractured and thus more compliant medium than the regional
host rock (e.g. Ben-Zion & Sammis 2003; Faulkner et al. 2003;
Mitchell & Faulkner 2009; Sagy & Brodsky 2009; Faulkner et al.
2010). Seismic and boreholes observations suggest that the crust
is inhomogeneous at all scales (e.g. Wu & Aki 1985; Levander &
Holliger 1992; Dolan et al. 1998; Marsan & Bean 2003). Material
property heterogeneities exist at all scales in three dimensions and
this complexity in turn affects our estimates of the source (e.g. Wald
& Graves 2001; Simons et al. 2002; Liu & Archuleta 2004; Zhao
et al. 2004; Hartzell et al. 2010; Trasatti et al. 2011; Hsu et al. 2011;
Gallovič et al. 2015; Williams & Wallace 2018). Fault geometry and
its parametrization, as well as the inclusion of topographic effects,
can also significantly impact inferred source properties (e.g. King
& Nabelek 1985; Zhang et al. 1991; Bouchon et al. 1998; Aochi &
Madariaga 2003; Masterlark 2003; Lee et al. 2006; Moreno et al.
2009; Hsu et al. 2011; Wei et al. 2011; Candela et al. 2012; Perrin
et al. 2016a; Pizzi et al. 2017; Zielke et al. 2017; Williams &
Wallace 2018; Langer et al. 2019, 2020).
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Numerous numerical approaches to simulating the deformation
caused by a seismic source embedded within a complex Earth struc-
ture model are now available, and are becoming increasingly com-
putationally efficient (e.g. Komatitsch & Tromp 2002; Tromp et al.
2005; Parker et al. 2008; Aagaard et al. 2013; Gharti et al. 2019).
Nevertheless, these methods remain more computationally demand-
ing than simply assuming layered elastic structures and planar faults.
Furthermore, even complicated 3-D models will be simplifications,
or fuzzy reflections, of the true Earth’s interior.

Another way to limit the biases deriving from our model approx-
imations is to explicitly account for their imperfections. Methods
have been proposed to account for the uncertainty of the Green’s
functions deriving from our poor knowledge of the Earth’s interior.
Yagi & Fukahata (2011), Duputel et al. (2012), Razafindrakoto &
Mai (2014) and Hallo & Gallovič (2016, 2020) account for uncer-
tainties in crustal structure, source time functions or centroid loca-
tion, for waveform finite fault inversions. Jiang & Simons (2016)
account for uncertainties in tsunami propagation. Duputel et al.
(2014) proposed to derive uncertainties in the Green’s functions
from small perturbations of the crustal structure. We previously
built on this approach in Ragon et al. (2018, 2019) to account for
uncertainties in the fault geometry. These solutions have only been
applied to layered heterogeneities. Accounting for uncertainty in
horizontally layered medium will not be sufficient in many cases,
such as a subduction zone, a vertical interface, or even a fault
surrounded by a damage zone. In this study, we use the approach
proposed by Duputel et al. (2014) to investigate the uncertainty in
3-D heterogeneities.

We demonstrate that small perturbation theory can be applied
to account for 3-D heterogeneities of the crustal structure. To do
so, we start by analysing simple 2.5-D toy models that allow us to
investigate combinations of vertical and horizontal interfaces while
avoiding any 3-D complexity in the interpretation of our results. In
particular, we explore the cases where an infinite strike-slip fault is
bounding two regions of different elastic properties, with or without
layering and with or without a compliant fault zone. Then, we vali-
date our results with a realistic finite-fault toy model embedded in a
half-space perturbed by vertical interfaces. We show that accounting
for epistemic uncertainties largely mitigates the impact of simple
crustal 3-D heterogeneity in source estimates. Our results suggest
that the presented approach will be efficient and easily implemented
for uncertainty acknowledgement in complex 3-D crustal structures,
such as velocity models derived from tomographic observations.

2 T O O L S A N D M E T H O D S

2.1 Uncertainties in model predictions due to inaccuracies
of the forward model

When solving for a source model m, our estimates will primar-
ily depend on the observations dobs and on the a priori calculated
Green’s functions, G. Additionally, estimated model parameters
will be influenced by both observational and epistemic errors, and
by any other prior assumption. Epistemic errors stem from our im-
perfect knowledge, or simplification, of the parameters describing
the forward problem, such as crustal properties (e.g. rheology), fault
geometry or regional characteristics (e.g. topography).

If we assume that the real surface displacement d follows a Gaus-
sian distribution centred on the predictions dpred = G(m) within an
uncertainty described by a covariance matrix Cχ , we can deter-
mine the discrepancies between observations and predictions of the

model m by a misfit function (Tarantola 2005; Minson et al. 2013,
2014; Duputel et al. 2014) of the form

χ (m) = 1

2
[dobs − G(m)]T · C−1

χ · [dobs − G(m)], (1)

Often, Cχ is assumed to only describe the observational covariances
Cd.

However, accounting for epistemic errors is often necessary to
infer reliable and robust source estimates (Minson et al. 2014; Du-
putel et al. 2014; Ragon et al. 2018, 2019). In this case, the misfit
covariance becomes

Cχ (m) = Cd + Cp(m), (2)

where Cp(m) is a covariance matrix describing the uncertainty of the
predictions, and thus which depends on the resulting source model.
The calculation methodology for Cp(m) is detailed in Duputel et al.
(2014) and Ragon et al. (2018); in the following paragraphs, we
only summarize the essential steps.

We assume an uncertain and presumably inaccurate set of pa-
rameters �prior describing generic properties of the forward model
�. We can explore the prediction uncertainty by assuming that the
predictions dpred = G(�, m) for the generic properties � can be ap-
proximated by linearized and small perturbations of the predictions
G(�prior, m) for the fixed set of parameters �prior and the unknown
source parameters m:

G(�, m) ≈ G(�prior, m) + K� (�prior, m) · (� − �prior), (3)

where the matrix K� (�prior, m) is the sensitivity kernel of the pre-
dictions with respect to the set of parameters.

If we want to incorporate Cp into the source estimation problem,
the calculation requires the prior choice of a source model mprior.
We choose to update mprior at every step of the sampling process. In
our case, �prior is a set of shear moduli values, which are so-called
Jeffreys parameters (i.e. Tarantola 2005), we thus assume the prior
distribution of � to be log-normal. The prediction matrix can then
be written as (Duputel et al. 2014)

Cp = K� · C� · KT
�, (4)

where

K� = KG
� · mprior, (5)

(KG
� )i jk(�prior) = ∂ Gik

∂ ln � j
(�prior), (6)

and C� is the standard deviation of the log-normal prior distribution
of parameters �. We can pre-compute the sensitivity kernels KG

�

without any dependence on the assumed model mprior. Finally, note
that, unlike the data covariance matrix Cd, the prediction covariance
matrix Cp usually has significant off-diagonal terms.

2.2 Description of the forward model

We want to investigate the impact of 3-D uncertainties in crustal
properties, and in particular lateral elastic heterogeneities, on in-
ferred slip models. We start by analysing a 2.5-D toy model, which
consists of an infinitely long vertical strike slip fault embedded in
an elastic half-space (Fig. 1). The half-space can either be homoge-
neous, or contain vertical and/or lateral heterogeneities.

The assumed fault extends infinitely along strike, and slips uni-
formly with an amplitude of 10 m from the free surface to a depth
of 10 km. The fault is discretized into 20 elements. The surface
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Figure 1. Description of the toy model used in the study. We assume an
infinitely long vertical strike-slip fault, with uniform 10 m slip, s, from the
free surface to a depth d of 10 km. The surface displacement is calculated
at 100 distinct locations distributed linearly and perpendicularly to the fault
strike, up to 40 km away from the fault in both directions. Here, the fault
is also a lateral interface between two crustal domains of different elastic
properties.

displacement is calculated at 100 distinct locations distributed per-
pendicular to the fault strike, up to 40 km away from the fault in
both directions (Fig. 1).

We choose to study an infinitely long and vertical strike slip fault
because analytical solutions for the surface displacement induced
by the equivalent dislocation problem have been proposed for var-
ious elastic structures (e.g. Rybicki 1971; Segall 2010), which is
computationally efficient for the simple tests we performed. When
the equivalent dislocation problem does not allow us to easily cal-
culate analytical solutions, we compute surface displacements with
the finite-element code Pylith (Aagaard et al. 2013), as detailed
bellow. We also perform some additional tests assuming a dip-slip
vertical fault for simplicity, validating our conclusions for plane
strain conditions.

2.2.1 Analytical solutions for slip on an infinite strike-slip fault

For dislocations in simple elastic structures, such as a homogeneous
half-space or with a single vertical or horizontal interface, the ex-
pressions of the surface displacement and sensitivity kernels are
directly derived from the solutions proposed by Rybicki & Kasa-
hara (1977) and Segall (2010), and are detailed in Appendix A.

When we investigate an elastic structure with several hetero-
geneities, we approximate the analytical solution with a moduli
perturbation approach (e.g. Du et al. 1994; Cervelli et al. 1999;
Segall 2010). This approach allows us to approximate the solution
for a multi-interfaces elastic structure as a superposition of solu-
tions calculated for single-interface structures (e.g. Mahrer 1981),
approximations that only hold if the variations in shear moduli are
small (see Appendix A4, and next paragraph for validation exam-
ples).

2.2.2 Finite-element modelling for slip on an infinite strike-slip
fault

For more complex elastic structures, and to validate our analyti-
cal approximations, we use the finite-element code Pylith (Aagaard

et al. 2013) with the grid specifications detailed in Fig. S1 and in
Table S1. We approximate the infinitely long fault with a 2000-km-
long fault (the fault is 200 times longer than wide). As a validation
example for our approximate analytical solutions, we use an elastic
structure composed of two horizontal interfaces and one vertical in-
terface, as described in Appendix A4 and Fig. A1. In this case, the
shear moduli ratios are realistic for typical values found in the crust
([0.3,0.9]), ensuring the variations in shear moduli remain relatively
small. The approximate analytical solution and the FEM-based solu-
tion agree at a level of a few percent (Figs S2 and S3). The similarity
between the solutions justifies the use of the approximations in the
following tests.

2.3 Bayesian sampling of the inverse problem

In this study, we explore the full solution space of the slip models
in order to draw samples from the most plausible models. The
sampling is performed with a Bayesian approach implemented in the
AlTar package, a reformulation of the code CATMIP (Minson et al.
2013). AlTar combines the Metropolis algorithm with a tempering
process to iteratively sample the solution space. A large number
of samples are tested in parallel at each transitional step, followed
by a resampling step that allows efficient exploration of complex
solution spaces.

The ability of each model parameter to solve the source problem
is evaluated through repeated updates of the probability density
functions (PDFs)

f (m, βi ) ∝ p(m) · exp[−βi · χ (m)], (7)

with m a representative sample, p(m) the prior information on this
sample, χ (m) being the misfit function, i corresponding to each
iteration and β evolving dynamically from 0 to 1 to improve the
efficiency of the parameter space exploration (Minson et al. 2013).

The final output from our Bayesian sampling procedure is an
ensemble of models sampling the posteriors PDF. To explore the
results, we consider derived probabilistic variables, such as the mean
of the sampled models and the associated posterior uncertainty.

We do not impose any spatial regularization or smoothing to nar-
row down the sampling space. Additionally, the use of probabilistic
values (such as the mean) can be seen as performing a posterior
smoothing of the solution space. As prior information, we impose
a uniform distribution p(m) = U(0 m, 25 m) for the strike-slip pa-
rameters, and a restrictive Gaussian prior distribution centred on
zero for the dip-slip parameters, p(m) = N (–1 m, 1 m).

3 A N I N F I N I T E S T R I K E S L I P FAU LT
E M B E D D E D I N A 2 - D - VA RY I N G
M E D I U M

All of our tests follow the same procedure. We compute synthetic
surface displacements at specified locations using the assumed true
elastic structure. In most of the following results, no noise is added
to the synthetic observations, but we also perform some tests with
various noise realizations in Section 3.3. We assume a diagonal data
covariance matrix Cd characterized by a variance of 1 m2 when no
noise is added to the synthetic data, or by the noise variance oth-
erwise. We perform a first inversion of the synthetic data assuming
the true Green’s functions (GFs) to validate our inversion process.
Then, we use an incorrect elastic structure (homogeneous or a sim-
plification of the true structure) to calculate inaccurate GFs, and
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Figure 2. Inferred slip amplitude characterized by its mean (vertical rect-
angle) and standard deviation (σ ), for an infinite strike slip fault bounding
two media of shear moduli μ1 and μ2. In (a), the slip is inferred assuming
the true elastic structure with μ1/μ2 = 0.5 . In (b) and (c), the crustal struc-
ture is assumed to be homogeneous, but in (c) epistemic uncertainties are
accounted for. The target slip is a uniform slip distribution of 10 m in am-
plitude (blue vertical line). (d) Model resolution (e.g. Menke 2012) for each
parameter. At the top of the figure, schematic views of the true and assumed
crustal structures are presented and colour-coded, the more compliant the
medium, the lighter the grey.

solve for the slip distribution assuming these inaccurate GFs. Fi-
nally, we repeat the inversion using inaccurate GFs, but accounting
for epistemic uncertainties.

For every test, we represent the results of the three sampling
procedures (for instance, refer to Fig. 2). We define every inferred
parameter with its mean and a range of plausible values (within 1σ

of the mean value), which are colour-coded corresponding to their
distance to the target model (10 m).

3.1 Fault bounding two media

Although elastic properties across a fault are usually relatively sim-
ilar (e.g. Ben-Zion & Andrews 1998), some portions of strike slip
faults may separate crustal domains of different properties. For in-
stance, Jolivet et al. (2009) modelled the interseismic velocity of
a section of the San Andreas fault using an asymmetric half-space
with a shear moduli ratio (μ1/μ2) of ∼0.66. A similar ratio has been
found by Reinoza et al. (2015) for the El Pilar fault in Venezuela.
Pichon et al. (2005) found very large rigidity ratios across some

portions of the North Anatolian and Great Sumatra faults, that may
be caused by elasticity contrasts with ratios as small as 0.1 (but
other parameters may be at play too). Bulut et al. (2012); Ozakin
et al. (2012); Najdahmadi et al. (2016) also found velocity contrasts
across the North Anatolian fault, although lower than the aforemen-
tioned values. In this first case, we consider an elasticity contrast
across the fault with a ratio of 0.5.

3.1.1 Results

As expected, when assuming true GFs, the target model is well
estimated (Fig. 2a), although with a relatively large posterior uncer-
tainty (up to 1σ = 3 m), associated with the low model resolution at
increasing depths (Fig. 2d). When assuming a homogeneous elastic
structure and neglecting epistemic uncertainties, the target model
is poorly recovered. The inferred slip is particularly off in the shal-
low part of the fault, probably because the surface displacements,
calculated with different structures, diverge the most within a few
kilometres of the fault (Fig. S4). In contrast, accounting for epis-
temic uncertainties allows us to correctly estimate the target model.
Typically, sampling procedures which account for Cp (for any type
of 2-D epistemic uncertainty, Ragon et al. 2018, 2019) prevent the
predictions from being overconfident in the data. Our test follows
the same scheme: including Cp yields larger residuals between pre-
dictions and synthetic observations (Fig. S4), although the inferred
model is relatively unbiased.

3.1.2 Non-uniform target slip distribution

Although our toy models are far from replicating the behavior of
a real fault, we present here a more realistic subsurface slip distri-
bution, which shows some shallow slip deficit and tapers at depths
to become null below 8-km-depth (Fig. 3). Additionally, spatially
correlated noise is added to the analytically calculated synthetic
data (Fig. S6). If assuming a correct crustal structure, while the
target slip deficit is well inferred down to 8-km-depth, the downdip
limit of the slip is poorly recovered, probably because of the poor
model resolution (fig. 2, also refer to the tests performed in Duputel
et al. 2014). As expected, if the crustal structure is approximated
and uncertainties neglected, inferred slip is off at all depths. Often,
the target is not even within uncertainty range from the mean slip.
Introducing Cp yields accurate results, slip values being very close
to the ones inferred with the true structure.

In the case where there is a vertical interface in crustal properties,
accounting for epistemic uncertainties allows us to properly infer
the target slip, even if non-uniform. Of course, the accuracy of the
results will depend on the sensitivity of the data. For simplicity,
we only present the non-uniform target slip case with the vertically
heterogeneous example. The conclusions that follow will be similar
for uniform or non-uniform slip distributions, as Duputel et al.
(2014) demonstrated that a layered crustal structure also impacts
the recovery of a non-uniform slip.

3.2 Lateral and vertical heterogeneity

In this example, the crustal structure is now composed of two com-
pliant layers above a half-space, the compliance decreasing with
depth. Additionally, the fault structure still acts as a vertical inter-
face. The elasticity contrast (given as a ratio) across the fault varies
from 0.6 (shallow layer) to 0.8 (at depth). Similarly, the elasticity
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Figure 3. Same as Fig. 2 but with a depth-varying target slip distribution.
The target slip is shown with a blue line. Note that the x-axis scale has a
larger extent than in the other figures.

contrast across horizontal interfaces varies from 0.6 (shallow layer)
to 0.8 (at depth).

Green’s functions and uncertainties have been calculated with the
analytical approximation only. The uncertainty is thus calculated for
every layer and for every vertical domain independently, which are
then combined.

3.2.1 Results

When assuming a homogeneous crustal structure in estimating slip
(Fig. 4), the increased complexity of the true crustal structure makes
the estimates very poor (Fig. 4b) Interestingly, the range of plau-
sible models does not in fact include the target model (the mean
parameters are not within 1σ of the target parameters). As ex-
pected, accounting for uncertainties reliably improves the inferred
models. Mean estimates are still slightly off for some parameters,
especially at depth, but the target model remains amongst the plau-
sible models. When Cp is not accounted for, deep oscillations of the
inferred slip amplitudes are required for the predictions to approach
the observations (Fig. S7). In contrast, the predictions of the case
with Cp stay very close to what they would be in a homogeneous
case.

Figure 4. Comparison of inferred models neglecting or including Cp. In-
ferred slip amplitude characterized by its mean (in between vertical white
bars) and standard deviation (σ ), for an infinite strike slip fault embedded
in a heterogeneous media, composed of 2 layers over a half-space and a
vertical heterogeneity (Fig. A1). In (a), the slip is inferred assuming the
true values for the shear moduli of each domain. In (b) and (c), the crustal
structure is assumed to be homogeneous, but in (c) epistemic uncertainties
are accounted for. The target slip is a uniform slip distribution of 10 m in
amplitude. At the top of the figure, schematic views of the true and assumed
crustal structures are presented and colour-coded, the more compliant the
medium, the lighter the grey.

What happens if we assume a layered crust instead of a homo-
geneous one? In this next case (Fig. 5), the fault is no longer an
interface and the crust replicates one side of the true structure. The
assumed structure being closer to the true one, the estimated model
is closer to the target model than in the previous tests. However, the
target model remains out of the plausible set of models, especially
at depth (Fig. 7b). In contrast, accounting for uncertainties yields
a well recovered target model. Note that the model estimated with-
out Cp is worst than the model estimated in the vertical interface
case (Fig. 2b), although the two cases can be thought as equivalent
(only the vertical interface missing from the assumed crust). This
difference is due to the fact that, in the layered case, the elasticity
ratio across the fault varies with depth, contrary to when there is a
vertical interface only.
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Figure 5. Same as Fig. 4, with, in (b) and (c), the crustal structure assumed
to be layered, and, in (c), epistemic uncertainties calculated analytically. The
assumed layered crustal structure replicates the left side of the true structure.

This series of examples suggest that we should always use a
layered crustal structure, even in the static case, instead of homo-
geneous structures, as already demonstrated by numerous authors
(e.g. Trasatti et al. 2011; Hearn & Bürgmann 2005; He et al. 2003;
Wald & Graves 2001, and other references in section 1). Of course,
accounting for uncertainties, either using homogeneous or layered
crust, will yield more robust results.

3.3 Different velocity gradient on either side of the fault

In the previous examples, the vertical gradient of the seismic ve-
locity has been assumed to be similar on either side of the fault.
In reality, however, the gradient can vary. For instance, the slope
of compliancy gradient can be different across the fault, or the
gradient can even be of different sign, as suggested by some ob-
servations of the San Andreas Fault near Parkfield (e.g. Agostinetti
et al. 2020), across the San Andreas and San Jacinto Fault zones
(e.g. Allam & Ben-Zion 2012) or the North Anatolian Fault (e.g.
Yolsal-Çevikbilen et al. 2012; Kahraman et al. 2015).

In this toy model, we consider a crustal structure consisting of two
layers above a half-space, the fault being a vertical interface. One
side of the fault is characterized by a decreasing compliancy with
depth (as in the previous layered case presented in Section 3.2),

Figure 6. Comparison of inferred models neglecting or including Cp. In-
ferred slip amplitude characterized by its mean (in between vertical white
bars) and standard deviation (σ ), for an infinite strike slip fault embedded
in a heterogeneous media, composed of 2 layers over a half-space and a
vertical heterogeneity, the velocity gradients being different in either side of
the fault. In (a), the slip is inferred assuming the true values for the shear
moduli of each domain. In (b) and (c), the crustal structure is assumed to
be homogeneous, but in (c) epistemic uncertainties are calculated for each
domain independently and accounted for. The target slip is a uniform slip
distribution of 10 m in amplitude. At the top of the figure, schematic views
of the true and assumed crustal structures are presented and colour-coded,
the more compliant the medium, the lighter the grey.

whereas the other side is characterized by a sign change in the
velocity gradient (see in Fig. 6). The elasticity contrast across the
fault varies from 0.6 (shallow layer) to 0.8 (at depth). The elasticity
contrast across horizontal interfaces varies from 0.5 (shallow parts
and sign change side) to 0.8 (at depth).

The Green’s functions are derived from the FEM (refer to Sec-
tion 2.2.2). Uncertainties can be calculated by perturbing each of
the six subdomains independently using the FEM. Another option
would be to estimate the uncertainties as in the layered case (Sec-
tion 3.2), that is by perturbing layer by layer, and combine these
uncertainties to the ones derived for the two vertical domains on
each side of the fault.
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Figure 7. Same as Fig. 6, with, in (b) and (c), the crustal structure assumed
to be layered, and, in (c), epistemic uncertainties calculated by layers and
vertical domains. The assumed layered crustal structure replicates the right
side of the true structure.

3.3.1 Results

For the first slip inference, we assume the crustal structure to be ho-
mogeneous (Fig. 6). Of course, when Cp is ignored, the inferred slip
model is very far from the target model, the set of plausible parame-
ters even excluding the target values. In contrast, when introducing
uncertainties in the inference process, calculated independently for
each domain, the target model is well retrieved (Fig. 6c). Interest-
ingly, the estimated slip model is closer to the target model than
in the layered case (Fig. 4c), and yet in the latter case the true
crustal structure was less complex. This suggests that calculating
uncertainty for each domain is more efficient at reflecting the sensi-
tivity of the Green’s functions than using the uncertainty of layers.
Even more clearly than for the previous examples, without Cp the
predictions fit the observations very well (Fig. S8) despite a woe-
fully incorrect slip model. The fit is worse when uncertainties are
accounted for, whereas the inferred model is closer to the target.

For the next toy model, we calculate the crustal uncertainty as in
Section 3.2, that is for each layer and for the two vertical domains
on each side of the fault, still deriving it from the FEM simulations.
We also assume a layered crust, using the elasticity values of the
decreasing compliance side of the true structure (Fig. 7). Without
Cp, the estimated slip is not too far from the target model, with the

exception of the deepest subfaults, probably because the assumed
crustal structure is closer to the true one. With Cp included, the
target model is well recovered. Interestingly, the result is slightly
farther from the target than in the former test, where epistemic un-
certainties were calculated independently for each crustal domain.
Indeed, deriving epistemic uncertainties as in the layered case does
not allow us to account for variations in velocity gradients across
the fault and within one layer.

If we assume a layered structure with elasticity taken as the
average of the true structure (layer by layer, Fig. S9), and assuming
the same uncertainty as in Fig. 7, both results with and without Cp

are even closer to the target model. Of course, it would be almost
impossible to know the average structure in a real case.

We also perform some tests adding various realizations of noise
to the synthetic surface displacement. When noise is added, we in-
crease observational uncertainties accordingly. For the first case,
noise consists of Gaussian noise combined with spatially correlated
noise with a standard deviation being of 6 per cent of the maximum
surface displacement. Assuming a homogeneous crustal structure,
results are similar whether or not noise is added, although inferred
models are slightly less accurate even with correct Green’s func-
tions. Introducing epistemic uncertainties (calculated for indepen-
dent domains) yields slightly less robust slip estimates at shallowest
depths (Figs S10 and S11), probably because of the noise affecting
near fault observations. For the second case, we use a different re-
alization of noise whose standard deviation is of 9 per cent of the
maximum surface displacement. Again, the results are very similar
to the noise-free case, assuming a homogeneous crust (Figs S12
and S13). Unsurprisingly, results are similar to the noise-free ones
if assuming a layered crust (again using the second noise realization
and epistemic uncertainties calculated from independent domains,
Fig. S14). These tests confirm that our results are robust whether
noisy observations are considered or not.

Finally, we also investigate if our conclusions hold for a dip-slip
fault. We assume a vertical fault for simplicity, and a target model
which consists in a 10 m amplitude reverse slip. Synthetic surface
displacement and Green’s functions are FEM-derived, and uncer-
tainties are calculated by perturbing each of the six subdomains
independently using the FEM. Assuming a layered crustal struc-
ture, our results replicate the ones of the strike-slip case: neglecting
Cp leads to very poor estimates (Fig. S15b), with the target slip
outside of the range of inferred plausible solutions (Fig. S16). In
contrast, introduction of epistemic uncertainties results in a greatly
improved inference (Fig. S15c).

3.4 Damage zone

Instead of an interface, observations of exhumed faults suggest that
faults may be a volume composed of a core, where most of the defor-
mation occurs, surrounded by a damage zone in which the deforma-
tion is smaller (e.g. Ben-Zion & Sammis 2003; Mitchell & Faulkner
2009; Sagy & Brodsky 2009; Faulkner et al. 2010). The damage
zone is typically characterized by reduced elastic moduli relatively
to surrounding rocks. The width of the inner and most damaged
part of the fault zone is usually thought to reach a few hundreds of
metres at its maximum (e.g. Mitchell & Faulkner 2009; Faulkner
et al. 2010; Savage & Brodsky 2011; Mitchell & Faulkner 2012) al-
though it can reach a kilometre in rare cases (e.g. Wilson et al. 2003;
Gudmundsson 2007), but some observations might suggest that the
outer and less damaged part could reach a few kilometres width
(e.g. Faulkner et al. 2003; Wilson et al. 2003; Gudmundsson 2007;
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Materna & Bürgmann 2016; Perrin et al. 2016b). Damage zones
can have a non-negligible impact on rupture dynamics, stresses and
slip estimates (e.g. Spudich & Olsen 2001; Faulkner et al. 2006;
Barbot et al. 2008; Sammis et al. 2009; Huang & Ampuero 2011;
Gabriel et al. 2013; Cappa et al. 2014; Huang et al. 2014; Perrin
et al. 2016b; Gombert et al. 2017).

In this last toy model, we consider a, possibly unrealistic, setting
in which the fault is embedded in a 2–4-km-wide damage zone of
reduced elastic modulus. The damage zone reaches infinite depth
and is characterized by an elastic ratio of 0.5 with the background
shear modulus. The Green’s functions and uncertainties are de-
rived from the analytical solutions (after Segall 2010) presented in
Appendix A5. We only investigate the sensitivity of the Green’s
functions to variations of the elastic properties of the damage zone,
that is we only estimate prediction errors from the domain corre-
sponding to the damage zone.

In the previous examples, the data points were distributed every
800 m. In this example, we increase the sampling of the data points
around the fault to improve the sensitivity to the damage zone. Data
points are thus distributed every 200 m within 5 km of the fault,
still considering a total of 100 data points within 40 km of the fault.
14 or 28 data points are located within the damage zone for a 2 or
4 km wide zone, respectively.

3.4.1 Results

If the damage zone is 2 km wide, its effect on static slip estimates
is very slight (Fig. S17), and assuming a homogeneous crustal
structure allows us to image correctly the target model. Still, ac-
counting for uncertainties improves the results, even if it is not
really necessary.

If we increase the width of the damage zone to 4 km, the number
of data points sensitive to the properties of the damage zone are
doubled. When assuming a homogeneous crustal structure, the es-
timated slip model is off (Fig. 8b). At the surface, the target model
is not even amongst the range of plausible models. In contrast, ac-
counting for uncertainties allows us to correctly infer the target slip.
Note that we only account for the uncertainties related to the damage
zone, which is reflected in Fig. S18 (uncertainty of the observations
is within 2 km of the fault).

From our results, we suggest that if more than 10 per cent of
the observations are located within the compliant damage zone,
accounting for the damages and related uncertainty becomes nec-
essary to infer reliable slip models. Some observations suggest that
the properties of damage zones, including their elasticity and width,
but also their presence, vary along strike (e.g. Materna & Bürgmann
2016; Perrin et al. 2016b). If there is along strike variability, account-
ing for epistemic uncertainties related to damage zones would also
be efficient, as introducing uncertainty still yields robust results if
the assumed structure is the true one (e.g. Ragon et al. 2018, 2019).

4 3 - D F I N I T E - FAU LT T OY M O D E L

In this section, we investigate if the proposed methodology is still
efficient in a real 3-D case. To this end, we build a 3-D toy model
which consists in a finite vertical strike slip fault embedded in a
heterogeneous medium.

Figure 8. Comparison of inferred models neglecting and including Cp.
Inferred slip amplitude characterized by its mean (in between vertical white
bars) and standard deviation (σ ), for an infinite strike slip fault embedded in
a compliant fault zone in a homogeneous half-space. The width of the fault
zone is 4 km. In (a), the slip is inferred assuming the true values for the shear
moduli of each domain. In (b) and (c), the crustal structure is assumed to
be homogeneous, but in (c) epistemic uncertainties are calculated for each
domain independently and accounted for. The target slip is a uniform slip
distribution of 10 m in amplitude. At the top of the figure, schematic views
of the true and assumed crustal structures are presented and colour-coded,
the more compliant the medium, the lighter the grey.

4.1 Setting of the finite-fault toy model

The strike slip fault is 20 km long and 15 km wide (i.e. downdip
extent), and is embedded in a heterogeneous half-space. We con-
sider that the half-space is divided into two regions by either a
vertical along-strike interface, or a vertical strike-perpendicular in-
terface. The vertical strike-perpendicular interface is unrealistic,
but it is an extreme illustration of along strike variations of crustal
properties that could be caused by a variety of factors, such as cross-
cutting faults, inherited rheology, or the presence of fluids. The true
shear moduli ratio between the two regions of the medium is 0.6.
Each component of the surface displacement caused by the target
strike-slip presented in Fig. 9(a) (equivalent to a Mw 6.7 event) is
produced at 200 locations randomly distributed 20 km around the
fault. Gaussian noise and spatially correlated noise (drawn from
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Figure 9. Comparison of inferred strike-slip amplitudes neglecting and including Cp in the 3-D case. The target slip model is shown in (a). When the true crustal
structure has an along-strike interface, inferred slip amplitude and posterior uncertainty are shown in (b) and (c), respectively neglecting and accounting for
Cp. When the true crustal structure has a strike-perpendicular interface, inferred slip amplitude and posterior uncertainty are shown in (d) and (e), respectively
neglecting and accounting for Cp. Schematic map views of the true and assumed crustal structures are presented and colour-coded, the more compliant the
medium, the lighter the grey.

multivariate Gaussian distributions) have been added to the obser-
vations. We assume that the observational error is of 6 per cent of
the displacement amplitude. Target predictions, Green’s functions
and uncertainties are derived from FEM simulations with the grid
specifications detailed in Fig. S19 and in Table S2, even when
assuming a homogeneous crustal structure.

For our tests, we assume that the ratio of shear moduli between
the two regions of the medium is 0.9 (and thus that the two regions
are elastically more similar than what they are in reality). We use a
uniform prior distribution p(m) = U(0 m, 25 m) for the strike-slip
parameters, and a Gaussian prior distribution centred on zero for
the dip-slip parameters p(m) = N (-2 m, 2 m).

4.2 Results

First, we investigate the case when the true structure is homoge-
neous, and when the assumed structure mirrors the true one. In this
perfect case, the inferred mean strike-slip amplitude is close to the
target model, even if it does not exactly replicate it (Fig. S20). Al-
though the noise is accounted for in Cd, the discrepancy between

the mean and the target model is probably due to a combination
of the observational noise and poor model resolution at depth. The
random distribution of the data plays a significant role in the im-
perfection of the range of recovered models. Nonetheless, the target
model lies within the inferred models.

4.2.1 Fault bounding two media

As expected, the inferred mean strike-slip amplitudes significantly
differs from the target model when uncertainties are not accounted
for (Fig. 9b). The posterior uncertainty (1σ , Fig. 9b) is low, and
thus the target model does not lie within 1σ or even 2σ of the mean
model. Similarly, the mean dip-slip amplitudes largely (up to 7 m)
vary around the target value of 0 m (Fig. S21a). In contrast, account-
ing for Cp yields estimated amplitudes closer to the target model,
the target being amongst the inferred samples (Figs 9c and S21c).
The standard deviation associated with the estimated amplitudes is
largely increased.
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Some particularly large amplitudes are imaged in between the
two slip patches, especially when neglecting Cp. These large am-
plitudes, probably primarily driven from inaccurate GFs, possibly
also derive from the lack of observations around the central part of
the fault (Figs S22a and c). When Cp is neglected, predictions are
overconfident in the observations (Figs S22a and c).

4.2.2 Strike-perpendicular vertical interface

Results are similar when the interface is perpendicular to the strike
direction, inferred models not replicating the target when uncertain-
ties are neglected, while the target is approached when uncertainties
are accounted for (Figs 9d,e, S21b and d).

Unlike the previous example, the target slip patch on the A side
of the fault (Fig. 9d) is not affected by any variation in the elastic
structure. Alluding to the physical intuition that a non-null gradient
of the shear modulus will have no impact on a displacement if
they are not collocated, we could postulate that the slip on side A
would be inferred correctly, whether the elastic structure on side
B is correct or not. Yet, we show that Cp is required to correctly
infer the target model on both sides. Obviously, the displacement
produced at the surface by the slip patch A is affected by the variation
of elastic properties in side B, in turn disturbing the estimates of
slip amplitude. Another explanation lies in the correlation between
model parameters: estimates of slip on side B are probably more
affected by a variation of elastic properties of side B, and in turn
can alter the slip estimates on side A.

Models inferred without epistemic uncertainties, for any type of
interface (Figs 9b and d), are particularly rough. We choose not
to include any spatial smoothing in our inference approach. Such
regularization is not required to approach the target model when
the assumed elastic structure is the true one (Fig. S20). Actually,
the roughness of the estimates without Cp is directly related to the
amplitude of the assumed observational errors (Cd). Here, we as-
sume conservative values for the observational error, this error being
slightly underestimated for some observations (the maximum noise
amplitudes reaching ∼10 per cent of the displacement amplitude for
6 per cent for the observational errors). There is thus no room in Cd

to encapsulate any other type of bias, such as the epistemic uncer-
tainties, and the predictions do require a rough model to reproduce
the observations. If Cd is artificially increased so that its amplitude
becomes slightly larger than Cp, the inferred mean model becomes
smoother but remains far from the target (Fig. S23), especially on
side B.

5 D I S C U S S I O N A N D C O N C LU S I O N

The San Andreas Fault system (SAF, CA, USA) is a well-
instrumented natural example to observe 3-D heterogeneities. Many
segments of the SAF show sharp across fault contrasts in rock prop-
erties (e.g. McGuire & Ben-Zion 2005; Lee et al. 2014; Fang et al.
2016; Share & Ben-Zion 2016; Qiu et al. 2017; Share & Ben-Zion
2018). Low-velocity zones have been observed around many seg-
ments (e.g. Li et al. 2004; McGuire & Ben-Zion 2005; Lewis et al.
2005; Lewis & Ben-Zion 2010; Qiu et al. 2017; Rempe et al. 2013).
Large along strike variations in material properties are observed as
well (e.g. Zhao et al. 2010; Allam et al. 2014; Lee et al. 2014; Shaw
et al. 2015). The 3-D heterogeneity of material properties of the
crust around the SAF is not an isolated example, this characteristic
being shared by crustal faults in general.

Heterogeneities in the crustal structure influence earthquake ini-
tiation, rupture propagation and aseismic phenomena (e.g. Master-
lark et al. 2001; Ampuero & Ben-Zion 2008; Brietzke et al. 2009;
Huang et al. 2014; Williams & Wallace 2015; Weng et al. 2016;
Barnes et al. 2020). Because of the limitations of our observations,
our knowledge of these heterogeneities comes with intrinsic (epis-
temic) uncertainties. This uncertain 3-D variability in turn biases
our estimates of the seismic source (e.g. Wald & Graves 2001;
Zhao et al. 2004; Hsu et al. 2006; Barbot et al. 2008; Hartzell
et al. 2010; Trasatti et al. 2011; Gallovič et al. 2015; Gombert et al.
2017; Williams & Wallace 2018). In this study, we investigate the
impact of uncertain 3-D heterogeneities in elastic parameters on
slip estimates inferred from static observations. We build on the
method originally proposed by Duputel et al. (2014) and based on
perturbation theory as applied to 2.5-D infinitely long fault and 3-D
finite-fault toy models to show that accounting for epistemic uncer-
tainties allows us to restrict or cancel out the impact of crustal 3-D
heterogeneity in source estimates.

Many authors have shown that assuming realistic 3-D crustal
structures would lead to more accurate source estimates (e.g. Cat-
tin et al. 1999; Masterlark 2003; Hsu et al. 2006; Gallovič et al.
2015; Wang & Fialko 2018). The estimation of displacements in 3-D
crustal structures relies on the use of 3-D numerical simulations, that
are more computationally demanding than semi-analytical methods
for homogeneous or layered crusts. The use of numerical simu-
lations for 3-D heterogeneous crust will probably become more
efficient with the popularization of user-friendly packages (e.g. Aa-
gaard et al. 2013; Gharti et al. 2019) and computational power.

However, we demonstrate that if the assumed realistic crustal
structure does not exactly replicate the reality (which is probably
always the case), epistemic uncertainties can lead to large biases in
inferred slip distributions. Similar results where found by Graves
& Wald (2001), who infer valid source models with a correct 3-D
crustal structure, but biased results when assuming an inaccurate
3-D crust. Because of the trade-off between model parameters, in-
accuracies in assumed structure might cause unrealistic changes
in source estimates if epistemic uncertainties are not introduced
(Fig. 9, similarly to other types of uncertainties, Ragon et al. 2019).
With any assumed crustal structure, accounting for related uncer-
tainties yields more robust and accurate results.

We also show that the most accurate results are obtained when
accounting for uncertainties while assuming a realistic Earth in-
terior (or as realistic as possible regarding the limitations of the
observations). Not surprisingly, the closer our model is to the true
structure, the most accurate our estimates will be.

Our approach to estimating Cp for 3-D heterogeneities of the
crust also relies on 3-D numerical simulation. As suggested by Du-
putel et al. (2014), our approach consists of assessing the impact of
small variations of mechanical properties for various domains of the
crust. These domains are defined in terms of known (or assumed)
heterogeneities of the local crustal structure. Calculating the epis-
temic uncertainties matrix only requires one additional estimate of
the surface deformation per domain.

The calculation of Cp can be simplified for 3-D crustal structures
which comprise horizontal stratifications. We showed that uncer-
tainties deriving from both horizontal and vertical variations of
crustal properties can be approximated by independent estimates
of the sensitivity of the Green’s functions to vertical variations or
horizontal variations. For instance, we show that if the assumed
crustal structure is layered and contains a vertical heterogeneity, we
can derive uncertainties (although less efficiently) separately from
the layers and from the vertical heterogeneity in a homogeneous
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medium, rather than from six distinct domains. This former ap-
proach could lower the computational cost for continental events,
as fewer numerical simulations would be necessary.

The crust is heterogeneous at all scales (e.g. Wu & Aki 1985;
Levander & Holliger 1992; Dolan et al. 1998; Marsan & Bean
2003), and thus domains of homogeneous crustal properties, as-
sumed to simplify 3-D simulations, probably present some intrinsic
heterogeneity. We show with our 2.5-D toy models that if the as-
sumed structure is closer to the reality than expected, accounting for
uncertainties is still efficient. Our approach to account for uncer-
tainties will thus be viable to include intrinsic domain heterogeneity.

If no or few data are sensitive to a heterogeneity in mechanical
properties of the crust, then source estimates will not be impacted.
For toy models in which damage zones are neglected, estimated
slip models are correct if few data are located within the damage
zone, but are biased if a certain amount is affected. These tests have
been made with an unrealistic velocity contrast of 0.5, which would
probably be lower for large earthquakes (e.g. Mitchell & Faulkner
2009; Faulkner et al. 2010; Savage & Brodsky 2011; Mitchell &
Faulkner 2012), and few observations would be located within 1–2
km of the fault. However, accounting for damaged zones becomes
necessary if a non-negligible fraction of observations is disturbed:
such as with improved near-fault coverage (i.e. with optical images
correlation, e.g. Avouac et al. 2006; Leprince et al. 2007; Milliner
et al. 2015; Marchandon et al. 2018).

In this study, we investigate the impact of crustal 3-D structural
complexity on slip estimates inferred from geodetic observations
and analyse an approach to mitigate the impact of imperfect knowl-
edge of this complexity on estimates of subsurface fault slip. We
demonstrate that accounting for epistemic uncertainties within the
inference procedure is viable and effective. We use a small pertur-
bation approach as applied to 2.5-D infinitely long fault and 3-D
finite-fault toy models to show that, when the assumed structure
does not replicate the reality, only accounting for epistemic uncer-
tainty allows us to reliably estimate the slip distribution. We have
focused here on coseismic models constrained by geodetic data.
The issues and approaches we have discussed here apply equally to
models that incorporate seismic data and to models of post-seimic
or interseismic processes.

This paper aims to pave the way towards uncertainty acknowl-
edgement for complex crustal structures characterized from obser-
vations. The presented approach can be used for any 3-D crustal
structure than can be discretized into domains of heterogeneous
material properties and shapes, such as element-sets if using finite
element methods. For any domain, the proposed approach would
only require the additional computation of Green’s functions with
a different material property. The shape and size of crustal domains
will be adapted in function of the observed crustal structure and
the available computational power. Our approach can also be used
to account for uncertainty in the definition of domain boundaries,
which often remain uncertain approximations of the reality, but
only at greater computational cost. Similarly, our approach would
be only difficultly adapted to continuous variations in crustal prop-
erties, because would require an overdiscretization of the crust with
homogeneous subregions to approximate the variations, and thus
again a drastic increase in computational cost.
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Supplementary data are available at GJI online.
Figure S1 Illustration of the FEM domain and mesh.
Figure S2 Comparison between FEM simulated surface displace-
ments and approximate analytical displacements for an infinite
strike slip fault embedded in an elastic structure composed of two
layers above half-space with a lateral heterogeneity (see setup in
Fig. A1 and Appendix A4).
Figure S3 Comparison of the Green’s functions derived from the
approximate analytical solution or from a simulation with the do-
main described in Fig. S1. In this case, the infinite strike slip fault
is embedded in an elastic structure composed of two layers above
half space with a lateral heterogeneity (see setup in Fig. A1 and
Appendix A4).
Figure S4 Comparisons between target predictions (observations)
and predictions with and without accounting for Cp, for an infinite
strike slip fault bounding two media of shear moduli μ1 and μ2. The
target predictions are calculated assuming true Green’s functions,
while the dashed curves are calculated assuming an homogeneous
crustal structure. The uncertainty associated with each curve is in
a similar colour. The uncertainty of the target predictions contains
Cp. The location of the fault surface rupture is shown with a grey
vertical line. The target slip is a uniform slip distribution of 10 m
in amplitude.
Figure S5 Variation of the surface displacement (Green’s functions)
with shear modulus value, for a vertical strike-slip fault bounding
two media of shear moduli μ1 and μ2. μ1 (left-hand side of the fault,
data from 0 to 50 km) is held fixed and μ2 (right-hand side) varies.
The surface displacement is calculated perpendicularly to the fault
(the fault being at 50 km) for a strike slip of 1 m on the shallowest
subfault (top panel), at intermediate depth (middle panel) or for the
deepest subfault (bottom panel).
Figure S6 Same as Fig.S4, but with the target predictions calculated
with a non-uniform target slip distribution, and with correlated noise
added.
Figure S7 Comparisons between target predictions (observations)
and predictions with and without accounting for Cp, for an infinite
strike slip fault embedded in an heterogeneous media, composed
of two layers over a half-space and a vertical heterogeneity. The
target predictions are calculated assuming true Green’s functions,
while the dashed curves are calculated assuming an homogeneous
crustal structure. The uncertainty associated with each curve is in
a similar colour. The uncertainty of the target predictions contains
Cp. The location of the fault surface rupture is shown with a grey
vertical line. The target slip is a uniform slip distribution of 10 m
in amplitude.
Figure S8 Comparisons between target predictions (observations)
and predictions with and without accounting for Cp, for an infinite
strike slip fault embedded in an heterogeneous media composed
of two layers above half space and a vertical heterogeneity, with
different velocity gradients on either side of the fault. The target
predictions are calculated assuming true Green’s functions, while
the dashed curves are calculated assuming an homogeneous crustal
structure. The uncertainty associated with each curve is in a similar
colour. The uncertainty of the target predictions contains Cp. The
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location of the fault surface rupture is shown with a grey verti-
cal line. The target slip is a uniform slip distribution of 10 m in
amplitude.
Figure S9 Same as Fig. 6, with, in (b) and (c), the crustal structure
assumed to be layered, and, in (c), epistemic uncertainties calcu-
lated by layers and vertical domains. The assumed layered crustal
structure is, for each layer, the average of the true structure.
Figure S10 Same as Fig. 6, with noise added to the synthetic surface
displacement. Gaussian noise is combined with spatially correlated
noise with a standard deviation being of 6 per cent of the maximum
surface displacement.
Figure S11 Same as Fig. S8, with noise added to the synthetic
surface displacements (noise realization 1, described in Fig. S10).
Figure S12 Same as Fig. 6, with noise added to the synthetic surface
displacement. Gaussian noise is combined with spatially correlated
noise with a standard deviation being of 9 per cent of the maximum
surface displacement.
Figure S13 Same as Fig. S8, with noise added to the synthetic
surface displacements (noise realization 2, described in Fig. S12).
Figure S14 Same as Fig. 7, with noise added to the synthetic surface
displacement, and, in (c) epistemic uncertainties calculated for each
domain independently.
Figure S15 Same as Fig. 7 but assuming a reverse dip-slip tar-
get model. Synthetic surface displacements, Green’s functions and
uncertainties are FEM-derived.
Figure S16 Comparisons between target predictions (observations)
and predictions with and without accounting for Cp, for an infinite
dip slip fault embedded in an heterogeneous media composed of two
layers above half space and a vertical heterogeneity, with different
velocity gradients on either side of the fault. The target predictions
are calculated assuming true Green’s functions, while the dashed
curves are calculated assuming a layered crustal structure. The un-
certainty associated with each curve is in a similar colour. The
location of the fault surface rupture is shown with a grey vertical
line. The target slip is a uniform reverse slip of 10 m in amplitude.
Figure S17 Same as Fig. 8, with a 2-km-wide fault zone.
Figure S18 Comparisons between target predictions (observations)
and predictions with and without accounting for Cp, for an infinite
strike slip fault embedded in a compliant fault zone. The target
predictions are calculated assuming true Green’s functions, while
the dashed curves are calculated assuming an homogeneous crustal
structure. The uncertainty associated with each curve is in a similar
colour. The uncertainty of the target predictions contains Cp. The
location of the fault surface rupture is shown with a grey verti-
cal line. The target slip is a uniform slip distribution of 10 m in
amplitude.
Figure S19 Illustration of the FEM domain and mesh for the 3-D
example.
Figure S20 Mean model and standard deviation estimated assuming
an homogeneous crust, the true crustal structure being homogeneous
too.
Figure S21 Mean dip-slip amplitude for the cases presented in
Fig. 9.
Figure S22 Comparison between observed and predicted displace-
ments for the cases presented in Fig. 9. For the vertical surface
displacement, the inner values represent the observed amplitudes,
and the outer values the predicted amplitudes. The observational
and prediction errors are not represented to make the figure easier
to read. The average observational error is assumed to be 6 per cent
of the displacement. The prediction error depends on whether Cp is
accounted for or not; it averages at 7 per cent without uncertainties,
and 25 per cent with Cp.

Figure S23 Mean model and standard deviation estimated for the
strike-perpendicular interface case, without accounting for Cp, but
with a Cd proportionally increased so that its amplitude is slightly
larger than Cp. In this case, inferred models are particularly far from
the target on the side of the fault which is within the region with a
varying shear modulus (right-hand side).
Table S1 Grid specifications.
Table S2 Grid specifications for the 3-D example.
Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : E X P R E S S I O N S O F
S U R FA C E D I S P L A C E M E N T F O R A
S T R I K E - S L I P D I S L O C AT I O N I N A 2 . 5 - D
M E D I U M

We consider a simple 2.5-D model of a strike-slip fault that extends
infinitely along strike. Strike-perpendicular and vertical directions
are respectively defined by the x1 and x2 axes, the free surface being
the x1, x3 plane. The displacement on the fault is restricted to the x3

direction (i.e. along strike direction). Each surface displacement is
calculated for a particular data point located at x1 along the strike-
perpendicular direction x1 (and then for x2 = 0).

A1 Strike-slip fault bounding two media

Following Segall (2010), we can derive the expression of the surface
displacement produced by an infinitely long vertical strike-slip fault
bounding two media of different shear modulus, μ1 and μ2. The slip
s on the fault extends from the free surface to depth d. We will refer to
displacement u(1) on the side with modulus μ1, and to displacement
u(2) on the side with modulus μ2.

u(1)
v (x1 < 0, x2 = 0) = 2s

π

μ2

μ1 + μ2
tan−1

(
d

x1

)

u(2)
v (x1 > 0, x2 = 0) = 2s

π

μ1

μ1 + μ2
tan−1

(
d

x1

)
(A1)

A2 One-layer above half-space

We first investigate the case of a medium composed of one horizontal
layer of thickness h and shear modulus μA, overlying a half-space
of different shear modulus μC. Slip s on the strike-slip fault extends
from the free surface to a depth d, with d ≥ h. We can derive
from Rybicki (1971) the expression of the displacement at the free
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surface as:

u A (x1, x2 = 0) = s

π
tan−1

(
h

x1

)

+ s(1 − K A)

π

[
tan−1

(
d

x1

)
− tan−1

(
h

x1

)]

+ s

π

+∞∑
m=1

K m
A

[
tan−1

(
(1 + 2m)h

x1

)

+ tan−1

(
(1 − 2m)h

x1

)]

+ s(1 − K A)

π

+∞∑
m=1

K m
A

[
tan−1

(
d + 2mh

x1

)

− tan−1

(
(1 + 2m)h

x1

)]
,

(A2)

∀ d ≥ h, and defining KA as:

K A = μA − μC

μA + μC
. (A3)

Also note that, if d ≤ h, the surface displacement become (Rybicki
1971; Segall 2010):

u A (x1, x2 = 0) = s

π
tan−1

(
d

x1

)

+ s

π

+∞∑
m=1

K m
A

[
tan−1

(
d + 2mh

x1

)

+ tan−1

(
d − 2mh

x1

)]
, (A4)

∀ d ≤ h.

A3 Two layers above half-space

We now consider the case of two layers, of shear moduli μ1 and μ2

and thickness hA and hB, overlying a half-space of shear modulus μ3,
the slip extending from the free surface to a depth d ≥ hB ≥ hA. The
slip can be formulated as the sum of two ‘one-layer’ dislocations,
whose resulting displacement has been given in eq. (A.3) (Fig. A1).

We approximate the solution with a moduli perturbation approach
(e.g. Du et al. 1994; Cervelli et al. 1999; Segall 2010). We assume
that the surface displacement induced by a dislocation of slip s is
equivalent to the superposition of 2 similar dislocations of slip s/2
embedded in 2 different structure. A validation of this approxima-
tion appears in Section 2.2.2.

We consider a first dislocation in a medium with one layer of
thickness hA and shear modulus μA overlying a half-space of shear
modulus μC, the slip s/2 extending from the free surface to a depth
d ≥ hA. A second dislocation is superposed to the first one, char-
acterized by a slip s/2 extending from the free surface to a depth d
≥ hB ≥ hA, in a medium with one layer of thickness hB and shear
modulus μB overlying a half-space of shear modulus μC.

u2 (x1, x2 = 0) = 1

2
(u A (x1, x2 = 0) + uB (x1, x2 = 0)) (A5)

∀ d ≥ hB ≥ hA, with μA 
= μC, μB 
= μC and defining KA as

K A = μA − μC

μA + μC
, (A6)

Figure A1. Superposition of dislocations in single-layered elastic structures
to approximate the surface displacement of a similar dislocation in a multi-
layered structure. In our examples, we choose μ1A/μ2C = 0.3, μ1B/μ2C =
0.6, μ2A/μ2C = 0.44, μ2B/μ2C = 0.74 and μ1C/μ2C = 0.87.

and KB as

K B = μB − μC

μB + μC
. (A7)

Each layer is thus characterized by a shear modulus expressed
by:

μ1 = μA + μB

2
,

μ2 = μB + μC

2
,

μ3 = μC (A8)

A4 Strike-slip fault bounding two 2-layered media

Finally, we can investigate the case where a vertical strike-slip fault
bounds two media, each characterized by two layers of different
shear moduli overlying a half half-space (Fig. A1). As for the pre-
ceding examples, the two layers are of thickness hA and hB, the slip,
s, extending from the free surface to a depth d ≥ hB ≥ hA.

We approximate the solution with a moduli perturbation approach
(e.g. Du et al. 1994; Cervelli et al. 1999; Segall 2010). We assume
that the surface displacement induced by a dislocation of slip s is
equivalent to the superposition of three similar dislocations of slip s
embedded in three different structure (2 with one horizontal layer, 1
with one vertical interface). Each layer (see Fig. A1) is characterized
by a different shear modulus:

μ1A = 1

3
(μ1 + μA + μB),

μ1B = 1

3
(μ1 + μB + μC ),

μ1C = 1

3
(μ1 + 2μC ),

μ2A = 1

3
(μ2 + μA + μB),

μ2B = 1

3
(μ2 + μB + μC ),

μ2C = 1

3
(μ2 + 2μC ). (A9)
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The displacement induced at the free surface can be simply ex-
pressed as the sum of eqs (A.1) and (A.4):

u(1) (x1 < 0, x2 = 0) = 1

3

[
s

π

μ2

μ1 + μ2
tan−1

(
d

x1

)
+u A (x1 < 0, x2 = 0)

+uB (x1 < 0, x2 = 0)

]
, (A10)

u(2) (x1 > 0, x2 = 0) = 1

3

[
s

π

μ1

μ1 + μ2
tan−1

(
d

x1

)
+u A (x1 > 0, x2 = 0)

+uB (x1 > 0, x2 = 0)

]
. (A11)

A5 Strike-slip fault embedded in a compliant fault zone

From Segall (2010), the expression of the surface displacement
produced by an infinitely long vertical strike-slip fault embedded in
a compliant fault zone of shear modulus μ2, the remaining part of
the half-space having a shear modulus of μ1, is:

u(1)
dz (x1 < −h, x2 = 0) = s(1 − K )

π

+∞∑
m=0

K m tan−1

(
d

x1 − 2mh

)

u(2)
dz (|x1| < h, x2 = 0) = s

π
tan−1

(
d

x1

)
+

s

π

+∞∑
m=1

K m

[
tan−1

(
d

x1 − 2mh

)
+ tan−1

(
d

x1 + 2mh

)]

u(3)
dz (x1 > h, x2 = 0) = s(1 − K )

π

+∞∑
m=0

K m tan−1

(
d

x1 + 2mh

)
.

(A12)

The slip, s, on the fault extends from the free surface to depth d, the
thickness of the fault zone is 2h, centred around x1 = 0, and K is
(μ1 > μ2):

K = μ1 − μ2

μ1 + μ2
. (A13)

A P P E N D I X B : E X P R E S S I O N S O F
G R E E N ’ S F U N C T I O N S A N D
S E N S I T I V I T Y K E R N E L S F O R A
S T R I K E - S L I P D I S L O C AT I O N I N A 2 . 5 - D
M E D I U M

From the expressions of the surface displacement presented in the
precedent section, we can derive the expression of the Green’s func-
tions and their derivatives. The Green’s functions are the surface
displacement induced by a unit slip on one subfault. We will con-
sider a subfault fi of width δd = di + 1 − di, di + 1 ≥ di. The Green’s
function G(xj, fi) can be expressed as the difference between the
surface displacement due to a finite dislocation between the free
surface and depth di + 1, and another finite dislocation between the
free surface and depth di.

B1 Strike-slip fault bounding two media

For an infinitely long vertical strike-slip fault bounding two media
of different shear modulus, μ1 and μ2, we thus have, following eq.
(A1):

Gv
(1)(x j , fi ) = u(1)

v (x j , di+1) − u(1)
v (x j , di )

Gv
(2)(x j , fi ) = u(2)

v (x j , di+1) − u(2)
v (x j , di ) (B1)

Gv
(1)(x j , fi ) = 2

π

μ2

μ1 + μ2

[
tan−1

(
di+1

x j

)
− tan−1

(
di

x j

)]

Gv
(2)(x j , fi ) = 2

π

μ1

μ1 + μ2

[
tan−1

(
di+1

x j

)
− tan−1

(
di

x j

)]
(B2)

We can then derive the expressions of the sensitivity kernels of
the Green’s functions with respect to each shear modulus. As the
shear modulus, μ, is a Jeffrey’s parameter (e.g. Tarantola 2005), the
generic expression of the sensitivity kernels is:

Kμ(x j , fi ) = ∂ G(x j , fi )

∂ ln μ
= ∂ G(x j , fi )

∂μ
· μ. (B3)

We thus have:

Kv,μ1
(1)(x j , fi ) = − 2

π

μ2 · μ1

(μ1 + μ2)2

[
tan−1

(
di+1

x j

)
− tan−1

(
di

x j

)]

Kv,μ1
(2)(x j , fi ) = 2

π

μ1
2

(μ1 + μ2)2

[
tan−1

(
di+1

x j

)
− tan−1

(
di

x j

)]
(B4)

Kv,μ2
(1)(x j , fi ) = 2

π

μ2
2

(μ1 + μ2)2

[
tan−1

(
di+1

x j

)
− tan−1

(
di

x j

)]

Kv,μ2
(2)(x j , fi ) = − 2

π

μ1 · μ2

(μ1 + μ2)2

[
tan−1

(
di+1

x j

)
− tan−1

(
di

x j

)]
(B5)

B2 One layer above half-space

Similarly, we can also calculate the Green’s functions for a strike-
slip fault embedded in a medium composed of one horizontal layer
of thickness hA and shear modulus μA, overlying a half-space of
different shear modulus μC.

If d ≥ hA, from eq. (A.2):

G1(x j , fi ) = 1 − K A

π

[
tan−1

(
di+1

x j

)
− tan−1

(
di

x j

)]

+1 − K A

π

+∞∑
m=1

K m
A

[
tan−1

(
di+1 + 2mh A

x j

)

− tan−1

(
di + 2mh A

x j

)]
. (B6)

If d ≤ hA, from eq. (A.4):

G1(x j , fi ) = 1

π

[
tan−1

(
di+1

x j

)
− tan−1

(
di

x j

)]

+ 1

π

+∞∑
m=1

K m
A

[
tan−1

(
di+1 + 2mh A

x j

)

+ tan−1

(
di+1 − 2mh A

x j

)

− tan−1

(
di + 2mh A

x j

)

− tan−1

(
di − 2mh A

x j

)]
, (B7)

We can then derive the expressions of the sensitivity kernels of the
Green’s functions with respect to μA:
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If d ≥ hA,

K1,μA (x j , fi ) = − 2

π

μC · μA

(μA + μC )2

[
tan−1
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x j
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− tan−1
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. (B8)

If d ≤ hA,

K1,μA (x j , fi ) = 2

π

+∞∑
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And with respect to μC, if d ≥ hA:

K1,μc (x j , fi ) = 2
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If d ≤ hA:

K1,μc (x j , fi ) = − 2

π

+∞∑
m=1

m · μC · μA

(μA + μC )2
K m−1
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)
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. (B11)

B3 Other structures

Similarly to the previous sections, we can derive the expressions of
the Green’s functions and sensitivity kernels for a compliant fault
zone, or approximate them for more complex structures. We do not
replicate these expressions as the derivatives are very similar to the
ones presented in Section B2.
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