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1 Influence of uncertainty on fault
dip for an optimization ap-
proach

As in the Bayesian approach (Section 3.2), we assume
a fault with a 20 km down-dip extent that prolongs in-
finitely along strike, and with a true dip of 55◦ for the
dip-slip case we investigate. The 100 data points follow
an irregular distribution and are calculated from a uni-
form target slip model of 1 meter from the surface to
20 km down dip. To precompute the prediction covari-
ance matrix, we use the result of the optimization ne-
glecting Cp as initial model (see Section 2.3.1). We per-
form a non-negative least squares inversion and include
spatial smoothing following the approach of Tarantola
(2005). The choice of regularization parameters is ex-
plained in Fig. S9.

The inferred parameters and their posterior uncer-
tainty Cm = (GT ·C−1

χ ·G)−1 are presented in Fig. 12.
Similarly to the Bayesian tests, the ability of the opti-
mization algorithm to approach the target slip model
depends on the inclusion of Cp. If the assumed fault
geometry is incorrect and related uncertainties not ac-
counted for (Fig. 12a), the inferred model is at odds
with the target model. Conversely, the inclusion of Cp

in the optimization allows the quasi-perfect approxima-
tion of the target model (Fig. 12b). Comparably to the
Bayesian approach, the posterior uncertainty of model
parameters increases with depth. For shallowest sub-
faults, posterior uncertainty is limited. Yet, for deeper
subfaults, posterior PDFs become quasi-uniform, simi-
larly to the Bayesian case. This large posterior uncer-
tainty comes from the depth limited model resolution
of our fault parametrization (Tarantola, 2005; Menke,
2012). The closer the model resolution is to 1 for a
subfault, the better the model is resolved. For our 20-
subfaults parametrization, the model resolution falls to

almost 0 at depth (Figs 12a,b). To compensate for
this limited resolution, a possibility is to increase the
size of subfaults (as discussed in Pritchard et al., 2002;
Page et al., 2009) which allows to have a model reso-
lution close to 1 everywhere on the fault (Figs 12c,d).
Figs 12(c) and (d) show the resulting slip models for a
fault discretization coarsening with depth from 1 km-
wide subfaults at the surface, to 2 km-wide subfaults
and then to 4 km-wide subfaults on the deepest parts of
the fault. In this case, the impact of an incorrect fault
geometry on inferred parameters is lower (Fig. 12c) as
the problem becomes less under-determined. With Cp

included, the posterior uncertainty is even more reduced
and the target model is approached with an uncertainty
that does not exceed 20 cm (Fig. 12d). We could use
the same approach to reduce the posterior uncertainty
of Bayesian estimations. Qualitatively, the predictions
of surface displacement for both models including and
neglecting Cp are identical to the Bayesian approach
predictions. RMS of residuals between observations and
predictions are smaller for models neglecting Cp than
for models including Cp: 1.1 mm, 2.5 mm and 0.66 mm
respectively for strike-perpendicular, strike-parallel and
vertical displacements with noCp, while the almost per-
fectly solved slip distribution with Cp has RMS of 2.6
mm, 3.7 mm and 1.9 mm. These RMS values are about
2 mm less than the ones found with a Bayesian inversion.
Indeed, with the optimization approach, the inversion is
based on the minimization of the misfit between obser-
vations and predictions. Instead, with a Bayesian ap-
proach the misfit is part oflikelihood and the algorithm
is not strictly driven by misfitmization. Additionally,
the RMS calculated in the Bayesian case is based on
the posterior mean model, and not the model minimiz-
ing the misfit. Whatever the source inversion method
employed, we show that the inclusion of a dip uncer-
tainty covariance matrix in the inversion is critical to
retrieve a more realistic slip distribution model.
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2 Supplementary Figures

Figure S1 – Comparisons between standardized data and predictions with and without accounting for Cp, for a fault with
dip-slip motion and assuming an incorrect dip angle. The location of the fault surface rupture is shown with gray vertical line.
Standardized data and predictions without accounting for Cp (i.e. Cχ = Cd) are shown in (a) and (b), respectively for strike
perpendicular and vertical surface displacements. Standardized data and predictions accounting for Cp (i.e. Cχ = Cp + Cd)
are shown in (c) and (d). The standardized observations Rdobs (with C−1

χ = RTR) are shown in blue. The standardized
displacements in khaki green are produced by the 1 m uniform target model assuming an incorrect fault dip. The standardized
predictions Rdpred shown in orange and green are calculated from the posterior mean model, respectively without and with Cp

included (and thus with a different R matrix).
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Figure S2 – Comparison of inversion results with and without neglecting the prediction uncertainty, for a dip-slip scenario
with varying assumed prior. The uniform target slip model is shown as a grey vertical bar. In (a) and (b), the assumed prior
allows for 50 cm of up dip slip, whereas in (c) and (d) the prior is strictly positive. The posterior PDFs are shown in (a) and (c)
when the prediction uncertainty is neglected and in (b) and (d) if Cp is included in the inversion. The posterior mean model
is indicated with a vertical grey dotted line. The offset between target model and posterior mean is displayed with a colorscale
saturated at 50cm.
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Figure S3 – Comparison of inversion results with and without neglecting the prediction uncertainty, for a dip-slip scenario.
The uniform target slip model is shown as a grey vertical bar. The correct fault is of 55◦ dip, whereas the assumed fault for
inversion is of 50◦ dip in (a) and (b) and of 45◦ dip in (c) and (d). The posterior PDFs are shown in (a) and (c) when the
prediction uncertainty is neglected and in (b) and (d) if Cp is included in the inversion. The posterior mean model is indicated
with a vertical grey dotted line. The offset between target model and posterior mean is displayed with a colorscale saturated
at 50cm.
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Figure S4 – Comparison of inversion results with and without neglecting the prediction uncertainty. The non-uniform target
slip model is shown as a grey vertical bar. The posterior PDFs are shown in (a) and (c) when the prediction uncertainty is
neglected and in (b) and (d) if Cp is included in the inversion, respectively for dip-slip and strike-slip behavior. The posterior
mean model is indicated with a vertical grey dotted line. The offset between target model and posterior mean is displayed with
a colorscale saturated at 50cm.
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Figure S5 – Comparisons between synthetic data and predictions with and without accounting for Cp. We assume the slip
on the fault to be non-uniform. The location of the fault surface rupture is shown with gray vertical line. Dip-slip behavior
(assumed fault dip of 50◦) generates cross strike surface displacement (a) and vertical surface displacement (b), whereas strike-
slip (assumed fault dip of 75◦) behavior produces only strike parallel displacement (c). The data points (i.e. generated by a slip
on the true fault) are shown in blue. The displacements in khaki green are produced by the 1 m uniform target model assuming
an incorrect fault dip. The predictions shown in orange and green are calculated from the posterior mean model, respectively
without and with Cp included.
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Figure S6 – Comparison of inversion results with or without neglecting for the prediction uncertainty for a dip-slip scenario.
The uniform target slip model is shown as a grey vertical bar. The posterior PDFs are shown in (a) when the prediction
uncertainty is neglected. When Cp is included in the inversion, the assumed standard deviation varies from 1◦, 5◦ to 10◦

respectively in (b), (c) and (d). The posterior mean model is indicated with a vertical grey dotted line. The offset between
target model and posterior mean is displayed with a colorscale saturated at 50cm.
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Figure S7 – Comparison of inversion results with or without neglecting for the prediction uncertainty for a dip-slip scenario.
The uniform target slip model is shown as a grey vertical bar. The posterior PDFs are shown in (a) when the prediction
uncertainty is neglected. When Cp is included in the inversion, the assumed standard deviation varies from 1◦, 5◦ to 10◦

respectively in (b), (c) and (d). In this case, the observational errors are assumed of 4 mm, and are thus understimated as the
added noise is of 7 mm. The posterior mean model is indicated with a vertical grey dotted line. The offset between target
model and posterior mean is displayed with a colorscale saturated at 50cm.

9



Figure S8 – Comparison of inversion results with or without neglecting for the prediction uncertainty for a dip-slip scenario.
The uniform target slip model is shown as a grey vertical bar. The posterior PDFs are shown in (a) and (c) when the prediction
uncertainty is neglected and in (b) and (d) if Cp is included. In (a) and (b), the noise added to the data has an amplitude of
7 mm. In (c) and (d), the noise has an amplitude of 7 mm and is correlated spatially. The posterior mean model is indicated
with a vertical grey dotted line. The offset between target model and posterior mean is displayed with a colorscale saturated
at 50cm.
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Figure S9 – Comparison of inversion results with and without neglecting the prediction uncertainty. The non-uniform
target slip model is shown as a grey vertical bar. The offset between correct and assumed faults is of 2 km. The posterior PDFs
are shown in (a) and (c) when the prediction uncertainty is neglected and in (b) and (d) if Cp is included in the inversion,
respectively for dip-slip and strike-slip behavior. The posterior mean model is indicated with a vertical grey dotted line. The
offset between target model and posterior mean is displayed with a colorscale saturated at 50cm.
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Figure S10 – Comparisons between synthetic data and predictions with and without accounting for Cp. We assume the
slip on the fault to be non-uniform. The correct location of the fault surface rupture is shown with gray vertical line, whereas
the assumed fault position is shown by a dotted grey vertical line. Dip-slip behavior generates cross strike surface displacement
(a) and vertical surface displacement (b), whereas strike-slip behavior produces only strike parallel displacement (c). The data
points (i.e. generated by a slip on the true fault) are shown in blue. The displacements in khaki green are produced by the 1
m uniform target model assuming an incorrect fault dip. The predictions shown in orange and green are calculated from the
posterior mean model, respectively without and with Cp included. The 5 missing data points around the faults position have
been removed to simulate a real case.

Figure S11 – Misfit (see eq. 1, with Cχ(m) = Cd) as a function of maximum slip amplitude (indication of model roughness)
for different optimizations made assuming correlation lengths varying from 2 to 26 km. We finally assume for our optimizations
the value of 14 km. The a priori standard deviation of model parameters σ has been chosen from the posterior standard
deviation of model parameters of a Bayesian optimization (see Fig. 5). Our assumed σ is of 50 cm. The scaling factor λ0 is
usually chosen as average distance between subfaults, and is thus assumed here of 1 km.
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Figure S12 – Comparison of results for a positive least squares optimization, with and without incorporating Cp. The
uniform target slip model is shown as a grey vertical bar. The inversion results are shown in (a) and (c) when the prediction
uncertainty is neglected and in (b) and (d) if Cp is included in the inversion, respectively for a 20 subfaults or a 8 subfaults fault
parametrization. The inferred model corresponds to the mean of the posterior gaussian distribution, the standard deviation
being the uncertainty on inferred parameters Cm = (GT · C−1

χ · G)−1. The posterior mean model is indicated with a grey
vertical dotted line, or with a colored dotted line if the posterior distribution is almost uniform (i.e the posterior uncertainty is
high). The offset between target and resulting model is displayed with a colorscale saturated at 50 cm.
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Figure S13 – Cp due to imprecise fault dip in a simplified 2D application. The assumed fault does not vary along strike,
is 20 km large and is dipping of 35◦ while the correct fault is dipping 30◦. The assumed model mprior is uniform at 1 m. The
prediction covariance matrix Cp is shown for strike parallel, vertical and cross strike surface displacement respectively in (a),
(b) and (c).
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