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Abstract

Our understanding of earthquakes is limited by our knowledge, and our description, of the physics

of the Earth. When solving for subsurface fault slip, it is common practice to assume minimum

complexity for characteristics such as topography, fault geometry and elastic properties. These

characteristics are rarely accounted for because our knowledge of them is often partial and they

can be difficult to include in simulations. However, topography and bathymetry are known all over

the Earth’s surface, and recently developed software packages such as SPECFEM-X have simplified

the process of including them in calculations. Here, we explore the impact of topography on static

slip estimates. We also investigate whether the influence of topography can be accounted for

with a zeroth-order correction which accounts for variations in distance between subfaults and

the surface of the domain. To this end, we analyze the 2015 Mw 7.5 Gorkha, Nepal, and the

2010 Mw 8.8 Maule, Chile, earthquakes within a Bayesian framework. The regions affected by

these events represent different types of topography. Chile, which contains both a deep trench

and a major orogen, the Andes, has a greater overall elevation range and steeper gradients than

Nepal, where the primary topographic feature is the Himalayan mountain range. Additionally, the

slip of the continental Nepal event is well-constrained, whereas observations are less informative

in a subduction context. We show that topography has a non-negligible impact on inferred slip

models. Our results suggest that the effect of topography on slip estimates increases with limited

observational constraints and high elevation gradients. In particular, we find that accounting for

topography improves slip estimates where topographic gradients are large. When topography has

a significant impact on slip, the zeroth-order correction is not sufficient.
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1. Introduction1

Estimates of subsurface fault slip are mainly constrained by observations of earthquake-induced2

deformation on the surface of the Earth, but they are also sensitive to information specified a priori3

to characterize the forward model. The forward model will always be an approximation to the real4

Earth, and these approximations can affect inferences of fault slip (e.g., Beresnev, 2003; Hartzell5

et al., 2007). We often assume minimum complexity for the forward problem, partly because we are6

not certain about many detailed aspects of Earth structure, but also to simplify Green’s functions7

computations. The simplest, and commonly used, description of the forward problem is a planar8

fault in a homogeneous elastic half-space with a flat surface. It is true that certain characteristics9

of the forward model, such as fault geometry and elastic heterogeneity, are often poorly known,10

but topography and bathymetry are well-constrained at the global scale.11

In previous studies, synthetic tests have shown that topography of the free surface, within12

a simple configuration, can have a significant impact on predicted static surface deformation,13

particularly if the source is located at shallow depths (e.g., McTigue and Segall, 1988; Huang and14

Yeh, 1997; Williams andWadge, 1998; Tinti and Armigliato, 2002). Within a realistic setup, several15

studies have found that Green’s functions produced with a 3D model which includes topography16

and 3D elastic structure yield more accurate sub-surface fault slip estimates (e.g., Zhao et al.,17

2004; Moreno et al., 2012; Kyriakopoulos et al., 2013; Gallovič et al., 2015; Tung and Masterlark,18

2016; Wang et al., 2017; Wang and Fialko, 2018). However, because most of these studies did not19

separate the effects of topography from those of heterogeneous elastic structure, it is not possible20

to determine the impact of topography alone from their results.21

A few studies did examine the effect of topography on predicted surface deformation or esti-22

mated sub-surface fault slip. Most of those studies analyzed earthquakes in regions with relatively23

small topographic gradients, so the effects of topography were not found to be significant. Mas-24

terlark (2003) suggested that the effect of topography on both predicted surface displacements and25

inferred slip, within a subduction context, is negligible when compared to the impact of elastic26

heterogeneity. However, the earthquake used in that study was the 1995 Mw 8.0 Jalisco-Colisma27

earthquake in Mexico, where the topography gradient is of limited amplitude and confined near28

the trench. Similarly, Trasatti et al. (2011) showed that the addition of topography had a minimal29

effect on the slip distribution of the 2009 Mw 6.3 L’Aquila event in Italy due to the lack of strong30

topographic variations in the region. Williams and Wallace (2018) investigated shallow slow slip31
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at the Hikurangi Subduction Margin in New Zealand, where the topographic gradient is relatively32

smooth. They determined that accounting for topography would only yielded a slight variation in33

their slip models (5% difference in seismic potency), which is much smaller than the effect they34

found for crustal heterogeneity (>50% difference in seismic potency). In contrast, Hsu et al. (2011)35

did examine the impact of topography on the predicted surface displacement for an earthquake that36

occurred in a region with significant topographic variations: the 2005 Mw 8.7 Sumatra subduction37

event. They demonstrated than the effect of topography on predicted surface deformation can be38

significant, especially if the fault slip occurs close to areas with strong topographic gradients.39

Most studies that included topographic structure used finite-element (or other numerical) meth-40

ods to calculate Green’s functions for quasi-static deformation. In some settings, it is possible to41

calculate these Green’s functions semi-analytically. Williams and Wadge (2000) developed a42

semi-analytical method for calculating deformation in a region with topography via a first-order43

perturbation to the elastic half-space solution. This first-order correction accounts for both as-44

pects of the topographic effect: topography-induced variations in distance between the fault and45

the surface of the domain, and the elastic effect caused by the shape of the topographic surface.46

However, this solution is only valid when topographic gradients are mild, and cannot be used in47

settings with extreme topography. Numerical simulation methods are required to produce Green’s48

functions in those settings.49

A previous study by some of these authors, Langer et al. (2019), found that the inclusion of50

topography has a significant effect on predicted surface deformation in a variety of settings. In51

particular, they modeled the 2015 Gorkha earthquake and found that 3D elastic structure and52

topography each caused differences of 10% in predicted coseismic surface deformation. However,53

the differences due to topography were more significant because they affected the shape of the54

deformation pattern, not only its magnitude. In this study, we seek to build on those results by55

investigating the extent to which those differences in the predicted surface displacement pattern56

are mapped onto the inferred slip distribution.57

Although previous studies have made some progress in investigating the impact of Green’s58

functions with 3D structure on coseismic slip models, the effects of topography have not been59

thoroughly examined. Topography is very well known for every region in the world, and thus60

above any earthquake rupture, and yet its influence remains poorly investigated. Accounting61

for topography is a simple way to include accurate information about the Earth in our inverse62

problem. We wish to know whether the inclusion of topography is necessary to infer accurate63

results in regions with topographic variations, and whether neglecting topography can impact our64

estimates of slip distribution.65
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An additional question that we wish to investigate is whether Green’s functions with a zeroth-66

order correction, which can be computed easily, can reproduce the results found using Green’s67

functions with topography. We refer to this correction as the receiver elevation correction (REC).68

The REC is a method of accounting for the variations in distance between source and receiver69

caused by topography. This method was first explored by Williams and Wadge (1998, 2000) in a70

volcanic setting, and was found to be somewhat effective when considering a spherical deformation71

source with axial symmetry. The REC was implemented in a tectonic setting by some of these72

authors in Langer et al. (2019) and by Yang et al. (2019), but its efficacy in tectonic settings,73

which have a very different geometry from volcanic settings, has not been determined.74

In this study, we aim to demonstrate that topography can have a significant impact on static75

slip estimates. To this end, we base our analysis on the study of the 2015 Mw 7.5 Gorkha,76

Nepal event and the 2010 Mw 8.8 Maule, Chile event. These earthquakes were chosen because77

the regions of Nepal and Chile represent two end-members of topographic structure (Figure 1).78

Nepal’s topography consists of many mountains and valleys that are close to one another, while79

Chile is segmented into large topographic domains: the trench and abyssal plain below 4000m,80

the margin and coastal plain around sea-level and the Andes mountain range mostly above 1500m81

altitude. The two events also differ in their data coverage: while the Gorkha event occurred on82

a terrestrial fault that is well-constrained by numerous data covering the entire region of interest,83

the Maule earthquake is only constrained by data from the landward side of the fault.84

For both events, we sample the possible slip parameters with a Bayesian approach, which85

allows us to thoroughly compare estimated slip models and to obtain detailed information on the86

posterior uncertainty of inferred parameters. We compare slip models estimated using Green’s87

functions calculated with and without topography and with the receiver elevation correction. We88

first analyze these events within a synthetic framework to show that neglecting topography can lead89

to large biases in source estimates. We then use the real datasets to demonstrate how slip estimates90

are altered when neglecting topography for these particular events. Note that our aim here is to91

investigate the impact of topography on slip estimates for two particular events, not to produce92

the most realistic slip models of these events. We therefore make simple approximations for the93

other forward model parameters, such as fault geometry and elastic heterogeneity, to simplify our94

interpretations.95
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Figure 1: Topography of Nepal (left) and Chile (right). Red rectangles show the outlines of the meshes used to

calculate Green’s functions with topography for each of these regions. Orange rectangles show the outlines of the

faults used in this study. Purple dots show the locations of the GPS stations. The black X symbols indicate the

epicenters of the April 2015 Gorkha main shock and the February 2010 Maule main shock. Lower panels show

topographic profiles for each region. The locations of the profiles are indicated by a red dashed line. Both profiles

are near the epicenters of the two events, but the Nepal profile is north-south and the Chile profile is east-west so

that the primary topographic features may be seen. The red X indicates the location of the epicenter along each

profile.
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2. Tools and methods96

2.1. Generating 3D Green’s functions97

A coseismic Green’s function Gij is the displacement at a point i on the surface of a domain98

due to slip on a subfault j. Green’s functions for a particular region may be calculated by dividing99

the fault into subfaults and calculating the displacement on the surface of the domain due to a100

unit quantity of slip on each subfault. In our study, we do not constrain rake in the inversion, so101

we must calculate Green’s functions for one meter of slip along strike and one meter of slip along102

dip. Thus, we must perform two calculations of surface displacement for each subfault.103

To calculate Green’s functions, we use a software package called SPECFEM-X (Gharti et al.,104

2019). SPECFEM-X, which is based on the spectral-infinite-element method, uses the (un)coupled105

elastic-gravitational equations to solve quasi-static problems. Since our Green’s functions require106

only calculations of coseismic deformation, we can neglect gravity. The governing equations then107

become108

∇ ·T+ f = 0. (1)

Here, T is the incremental Lagrangian Cauchy stress and f represents external forces.109

There are several ways to implement a fault in SPECFEM-X. In this study, we use the moment-110

density tensor fault implementation. Each subfault is subdivided into a grid of patches, and each111

patch has an associated moment-density tensor given by (Dahlen and Tromp, 1998)112

m = ∆s C : ŝ ν̂. (2)

C is the elastic tensor at the location of the fault patch. C varies in a heterogeneous domain, but113

the models in this study are homogeneous, so for our purposes C is constant. ν̂ is the normal114

vector and ŝ is the slip direction. In general, these vectors must be calculated for each patch, but115

this study uses uniform fault geometry, so ν̂ and ŝ do not vary between patches. ∆s is the slip116

magnitude. When calculating Green’s functions, we set ∆s = 1 m.117

SPECFEM-X calculates deformation throughout the mesh volume. However, we only need118

Green’s functions at the locations on the surface where we have observations. The displacements119

at each of these observation points due to each fault patch are combined into a single matrix of120

Green’s functions, G.121

2.2. Receiver elevation correction122

Despite the efficiency of SPECFEM-X, we cannot match the speed of Green’s functions cal-123

culations performed with the elastic half-space analytical solution (Steketee, 1958; Mansinha and124
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Figure 2: Green’s functions with a receiver elevation correction are computed by calculating a separate

homogeneous half-space solution for each point on the surface where Green’s functions are needed. We

would like to raise the flat surface to the elevation of the desired point (left). Since this is not possible, we

lower the fault instead so that the distance between the fault and the surface is correct (right). For each

homogeneous half-space setup in the right-hand panel, the Green’s function is only calculated at the blue

point on the surface.

Smylie, 1971). It would therefore be advantageous if there was a method of correcting the elastic125

half-space solution for topographic effects. There are two contributions to the topographic effect:126

the varying distance between the fault and the surface, and the elastic effects caused by the shape127

of the topographic surface (Williams and Wadge, 2000). The first of these effects can easily be128

accounted for by a zeroth-order correction which we refer to as the receiver elevation correction129

(REC), in which all calculations are done with the elastic half-space approximation but, for each130

receiver, with the fault raised or lowered to preserve its absolute distance to the receiver position131

if topography had been there. A diagram of this method is shown in Figure 2.132

The REC is very easy to implement and can be calculated quickly, since it requires only a slight133

modification to the standard homogeneous elastic half-space calculation. However, in volcanic set-134

tings, it was found to not be a good approximation when topographic gradients are steep (Williams135

and Wadge, 2000); in this case, a more complicated semi-analytical solution or FEM must be used.136

We wish to determine whether the REC is a good approximation for topography in slip inversions137

of the Gorkha and Maule events. To this end, we calculate Green’s functions for these events138

with the receiver elevation correction, and perform inversions to determine whether the REC can139

recover the result found with topographic Green’s functions calculated with SPECFEM-X.140

2.3. Bayesian sampling141

Instead of trying to find a single solution to the inverse problem, we choose to sample the142

solution space and image a selection of its probable models. This sampling approach allows us143

to precisely compare various slip models and their posterior uncertainty. We do not incorporate144

any spatial smoothing that may bias or induce unwanted artifacts in inferred slip models (Du145
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et al., 1992; Beresnev, 2003; Aster et al., 2005; Causse et al., 2010; Gallovič et al., 2015; Gombert146

et al., 2017). This choice will allow us to more precisely quantify the effects of topography. We147

use the Bayesian sampling approach implemented in the AlTar package, which is a rewrite of the148

code CATMIP (Minson et al., 2013). AlTar combines the Metropolis algorithm with a tempering149

process to perform an iterative sampling of the solution space of source models. A large number of150

samples are tested in parallel at each transitional step. Additionally, resampling is performed at151

the end of each step to replace less probable models. The probability that a given sample will be152

selected depends on its ability to fit the observations dobs within the uncertainties Cχ = Cd+Cp,153

where Cd represents the observational errors and Cp the epistemic uncertainties introduced by154

approximations of the forward model (e.g., Minson et al., 2013; Duputel et al., 2014; Ragon et al.,155

2018, 2019b).156

The ability of each model parameter to solve the source problem is evaluated through repeated157

updates of the Probability Density Functions (PDFs):158

f(m, βi) ∝ p(m) · exp[−βi · χ(m)], (3)

where m is the current sample, p(m) is the prior distribution on this sample, i corresponds to the159

current iteration and β evolves dynamically from 0 to 1 to ensure an exhaustive exploration of the160

solution space (Minson et al., 2013). χ(m) is the misfit function:161

χ(m) =
1

2
[dobs −G ·m]T ·C−1

χ · [dobs −G ·m]. (4)

The final output from our Bayesian sampling procedure is a series of models sampled from162

among the most plausible models of the full solution space. This set of samples provides information163

on the possible parameter values and on their uncertainty. Average models (average value for every164

parameter) are probabilistic values that do not correspond to a sampled model, but which can give a165

good insight on the slip value of the most likely solutions. The posterior standard deviation of every166

parameter informs on the amount of slip uncertainty associated with each subfault. More detailed167

quantities, such as the marginal posterior distribution of a given parameter, reflect what has been168

learned relative to our prior information. In particular, the shape and width of the posterior169

marginal PDFs can be considered a proxy for the model resolution of the inferred parameter. To170

visualize the results in the following sections, we plot average slip models and associated standard171

deviations in map view, and the posterior marginal PDFs for a few representative subfaults. In172

the following, we use the term spatial resolution when describing whether model parameters can173

be independently resolved in theory (Menke, 2012, e.g.), and the term model resolution when174

describing their associated uncertainty.175
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3. A continental thrust test case: The 2015 Mw7.8 Gorkha, Nepal earthquake176

On April 25, 2015, a magnitudeMw7.8 earthquake occurred in central Nepal along the boundary177

between the Indian and Eurasian tectonic plates. This region is home to extreme topographic178

variations, and it is entirely terrestrial, so extensive data coverage from InSAR and GPS is available179

throughout the area of interest. These qualities make this earthquake an ideal event for a study180

on the impact of Green’s functions with topography.181

The 2015 Gorkha mainshock has been extensively studied with seismic and geodetic data (Wang182

and Fialko, 2015; Feng et al., 2015; Yagi and Okuwaki, 2015; Yi et al., 2017; Yue et al., 2017; Liu and183

Yao, 2018; Ingleby et al., 2020). Most studies recovered an inferred slip distribution consisting of an184

oval-shaped slip pattern with its center slightly northwest of Kathmandu and a small bulge to the185

northeast. The ruptured area was found to be approximately 150 km long, with a maximum slip of186

6 m. Most of the previously published slip studies of this event used Green’s functions calculated in187

a homogeneous half-space, with a few exceptions. Tung and Masterlark (2016) calculated Green’s188

functions for the Gorkha event using a finite element model with heterogeneous crustal structure189

and realistic topography, and used those Green’s functions to invert for a slip model using GPS190

and InSAR data. The resulting slip model was compared to one found using Green’s functions191

with topography but homogeneous elastic structure. They found that the heterogeneous Green’s192

functions yielded a slip model that fit their data better. However, they did not investigate the193

impact of topography. Similarly, Wang et al. (2017) compared slip models recovered using Green’s194

functions calculated in a homogeneous half-space and in a heterogeneous, topographic domain. The195

two models had slightly different slip distributions and different slip amplitudes. However, their196

tests showed that the dominant effect was likely due to the heterogeneous elastic structure, which197

makes it difficult to determine the impact of topography in isolation. A study on the effects of198

topography was performed by Yang et al. (2019), which computed Green’s functions with and199

without the receiver elevation correction. They found that the two resulting slip models differed200

in both slip amplitude and distribution. However, as we discussed in Section 2.2, the REC does201

not capture the full topographic effect and is not always a good approximation, especially when202

topographic gradients are large. Is this correction sufficient for the 2015 Gorkha earthquake? In203

this section, we seek to answer this question by assessing the full topographic effect on the static204

fault slip estimate.205

Because of the good instrumentation of this event, combined with the fact that most of the slip206

occurred on a shallowly dipping part of the fault (see a more detailed explanation in Section 3.1.3),207

the coseismic deformation is unusually well constrained. This exceptional spatial resolution ex-208
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plains why the published slip models are almost all identical. With this in mind, we might ask209

whether the inclusion of topography is necessary to improve our slip models or the fit to our data.210

To answer this question, we invert for synthetic slip models to determine whether Green’s functions211

with topography can truly improve inversion results.212

The unusually high constraint on the slip distribution of the Gorkha event is not shared by most213

earthquakes, especially subduction events, which occur in areas with strong topographic gradients214

that are far from any terrestrial data. It is conceivable that the impact of topography may not be215

noticeable with lower slip resolution. We therefore also investigate the Gorkha event using only216

GPS data to find out whether our results can be generalized to a less well-constrained case.217

3.1. Data and Forward Model218

3.1.1. Data219

Our geodetic data set contains static co-seismic offsets from 18 3-component continuous GPS220

stations and 4 SAR interferograms. The data points are scattered over our model domain. The221

GPS offsets were provided by Galetzka et al. (2015) and Yadav et al. (2017). One Sentinel-1222

ascending frame was used, collected by the European Space Agency and processed by Grandin et al.223

(2015). Two ALOS-2 descending frames and one ALOS-2 ascending frame, collected by the Japan224

Aerospace Exploration Agency (JAXA), were processed by Lindsey et al. (2015). The InSAR data225

have been downsampled based on model resolution (Lohman and Simons, 2005), and the data errors226

have been calculated following Jolivet et al. (2012). A more detailed description of our data can be227

found in Section S1 of the Supplementary Material. Note that the surface displacements derived228

from the InSAR data contain between 8 and 9 days of post-seismic deformation, and that our GPS229

displacements are daily solutions, which might affect our modeling of the coseismic phase (e.g.230

Ragon et al., 2019a; Twardzik et al., 2019)231

3.1.2. Crustal domain parameters232

Our model domain extends from 83.5◦E to 87.5◦E and 26.6◦N to 29.2◦N. The mesh, shown233

in Figure S2, measures approximately 390 × 280 × 83 km and has a mesh spacing of 3 km, for234

a total of 323830 elements. This mesh is used for all topographic Green’s functions calculations,235

whether the full dataset or only GPS data are used. Each forward model calculation runs on 40236

processors in approximately 5.2 minutes. The model domain has a Poisson’s ratio of 0.25 and237

Young’s modulus of 82.4 GPa. These are the material properties used for the homogeneous model238

of Nepal in Langer et al. (2019).239

Our benchmarks, shown in Figure S3, showed that solutions produced by SPECFEM-X with240
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a flat mesh are nearly identical to those produced with homogeneous elastic half-space solu-241

tions (Okada, 1992) for coseismic deformation. Since homogeneous half-space calculations are242

much faster, we generated the Green’s functions without topography using those analytical solu-243

tions. We choose to put the surface of the flat domain for the non-topographic Green’s functions244

calculations at an elevation of 244 m, which corresponds to the elevation of the deepest point where245

the fault meets the surface in the topographic mesh.246

3.1.3. Assumed MHT fault geometry247

Many attempts have been made to determine the structure of the Main Himalayan Thrust248

(MHT) fault in Nepal. Some studies have found evidence that the MHT has a ramp-flat-ramp249

structure (Nábělek et al., 2009; Wang and Fialko, 2015; Elliott et al., 2016; Wang et al., 2017;250

Almeida et al., 2018b). Others have argued that instead of a lower ramp, the MHT has a duplex251

system of steeply dipping faults (Herman et al., 2010; Grandin et al., 2012; Mendoza et al., 2019).252

Others have found that a planar fault provides the best fit to the data for the 2015 Gorkha253

earthquake (Whipple et al., 2016; Wang and Fialko, 2018). Even if a ramp-flat-ramp structure254

does exist in the region of interest, it probably would not have a significant effect on our inversion255

because nearly all studies agree that the vast majority of slip took place on the flat section of256

the fault (Elliott et al., 2016; Wang and Fialko, 2018; Yang et al., 2019; Ingleby et al., 2020).257

Additionally, Ingleby et al. (2020) suggests that coseismic data do not require a shallow splay258

fault. Therefore, we have chosen to use a planar fault when generating Green’s functions.259

We assume a 180 km long and 100 km wide planar fault, with a strike of 285◦ and a dip of 7◦260

northeast. Because the slip that occurred during this event did not reach the surface, we eliminated261

the upper section of the fault, so that the starting depth of the fault is at 3.9 km. For the inversions262

with the complete dataset, the fault is divided into a grid of 10 km × 10 km subfaults, so that263

there are 18 subfaults along strike and 10 subfaults along dip. When calculating Green’s functions264

with topography using SPECFEM-X, we use 400 moment-density tensor patches for each subfault.265

Given the results of the tests presented in Gharti et al. (2019), this number of patches is more266

than enough to guarantee convergence.267

When only GPS data are used, the spatial resolution is less. Therefore, we increase the size of268

each subfault to 15 km × 12.5 km. The fault has only 12 subfaults along strike and 8 subfaults269

along dip. When calculating Green’s functions with topography using SPECFEM-X, we use 9216270

moment-density tensor patches for each subfault. The other fault parameters are detailed in Table 3271

of the Supplementary Material.272
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3.1.4. Other assumed prior information273

We perform our static slip estimation as previously detailed in Section 2.3. We specify a zero-274

mean Gaussian prior p(m) = N (-1 m, 1 m) on the strike-slip component, since we assume that,275

on average, the slip direction is along dip. For the dip-slip component, we consider each possible276

value of displacement equally likely if it is positive and does not exceed 25 m of normal slip:277

p(m) = U(0 m, 25 m). We account for the data uncertainties as detailed in Section S1 of the278

Supplementary Material. We assume conservative uncertainty values of (-1◦, 1◦) around the prior279

value for the fault dip and (-1 km, 1 km) for the fault position.280

3.2. Results281

We first wish to investigate the impact of topography on slip models without contamination282

from potential uncertainties or bias that may result from our choices of crustal properties and fault283

structure, or from data errors. Therefore, we will start by analyzing the results of synthetic tests.284

This will allow us to determine whether Green’s functions with topography can truly improve285

the inferred slip distribution. We will then use our inversion procedure to estimate slip models286

using real data from the Gorkha earthquake. In both cases, we will perform inversions using two287

datasets, one consisting of all data points from GPS and InSAR, and one with GPS stations only.288

3.2.1. Synthetic tests289

For the synthetic inversions with the full dataset, our target model, shown in Figure 3A, consists290

of five pure dip-slip patches of 6 m amplitude: four 20 × 20 km patches located at each corner291

of the fault, and a central patch 50 km long and 20 km wide. In the GPS-only case, shown in292

Figure 3E, the corner slip patches are 30 km long and 25 km wide, and the central slip patch is293

60 km long and 25 km wide. Using a topographic domain and the fault geometry specified in294

Section 3.1.3, we compute the surface displacements induced by each of these target models at295

the data locations. We then solve for slip distributions with these synthetic data using Green’s296

functions with and without topography. In our inversions, we assume the same fault geometry297

and crustal structure used when calculating the synthetic data. A first set of tests is done without298

noise added to the synthetic data, so that the inversion process is only perturbed by changes in the299

Green’s functions. In another set of tests which are presented in Supplementary Material, we add300

white noise and spatially correlated noise (with a Gaussian covariance matrix of variance 1 and301

correlation length 10 km and 50 km) to the synthetic data, so that the noise amplitude reaches up302

to 10% of the maximum amplitude of the data. The assumed data error is the same as for the real303

dataset. We do not account for uncertainty in the fault geometry, since the geometry is perfectly304

known. The results of these tests are shown in Figures 3 and S5.305

12



50 km

84° 85° 86°

27°

28°

Target slip modelA

Non-topographicB

RECC

TopographicD

Full dataset

0 2000 4000 6000

Coseismic Slip (mm)

50 km

84° 85° 86°

 

 

 

Target slip modelE

GPS data only

Non-topographicF

RECG

TopographicH

GPS stations in near field

Figure 3: Comparison of slip models estimated from synthetic data for the Gorkha earthquake. (A) and (E): Target

slip models used to calculate the full synthetic data set or synthetic GPS-only dataset, respectively. In (E), gray

dots show the locations of the GPS stations. The remaining panels show average slip amplitude and rake inferred

with non-topographic, REC and topographic Green’s functions using the full synthetic data set (left columns) and

synthetic GPS data only (right columns). Color scale is the same for all figures.
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When the noise-free full synthetic data set is used, the slip model is perfectly recovered with306

topographic Green’s functions (Figure 3D). When Green’s functions without topography are used,307

only some slip patches are recovered (Figure 3B). The non-topographic Green’s functions do espe-308

cially poorly in the intermediate and deep sections of the fault, where topographic gradients are309

largest and where the data are less informative because the slip is farther from the location where310

the fault reaches the surface. If we use Green’s functions with the receiver elevation correction311

(Figure 3C), the slip model is recovered better than with non-topographic Green’s functions but312

not as well as when using Green’s functions with topography. Results are even farther from the313

target model when using noisy data, with the exception of the topographic case, in which the314

target slip model is estimated fairly well (Figure S5).315

When only GPS data are used, several slip patches can be recovered somewhat with topographic316

Green’s functions (Figure 3H),and for most parameters, more than 30% of inferred values (and up317

to 60%) lie within 1.5 m of the non-zero target slip. None of the inversions can perfectly recover the318

target model, which is expected given that the data coverage is too poor to be fully compensated319

by increasing the size of the subfaults. However, the difference between the models estimated320

using Green’s functions with and without topography is even more pronounced in this case. In321

particular, the non-topographic model fails to infer the eastern shallow slip patch, and concentrates322

the other slip patches into a fourth of their actual spatial distribution (Figures 3F, G), so that323

less than 10% of the inferred parameters lie within 1.5 m of the non-zero target slip. Interestingly,324

Green’s functions with the REC produce a slip model very similar to the non-topographic result,325

and in fact seem to do an even poorer job in the shallow section of the fault. Inferred models are326

similar when using a noisy dataset (Figure S8).327

Synthetic data are well fitted by the predictions of the inferred models, whether noise has328

been added or not (Figures S4, S6 and S7. However, only the models recovered with topographic329

Green’s functions can explain the ∼10 cm uplift occurring where topographic gradients are greatest330

(around 29◦N, Figure S4). The REC method, in contrast, does not significantly improve the fit to331

the synthetic data.332

These synthetic tests show that the use of Green’s functions with topography leads to a signif-333

icant improvement in the recovered slip models. This is also true if realistic amounts of noise are334

added to the synthetic data, demonstrating that topographic effects are significant enough to affect335

an inversion with real data. Accounting for topography becomes even more necessary when the336

slip is not well-constrained due to poor spatial resolution since, in this case, use of non-topographic337

Green’s functions leads to very poor estimates of the slip distribution. Green’s functions with the338

receiver elevation correction were able to recover a better slip model than non-topographic Green’s339
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functions when the full dataset was used, but they performed more poorly in the GPS-only case.340

With this in mind, we will now analyze inferred slip distributions found with these different types341

of Green’s functions using the real dataset from the Gorkha earthquake.342

3.2.2. Inferred Slip Distributions with the Full Dataset343

Inferred slip distributions for the 2015 Gorkha earthquake found with the full dataset of GPS344

and InSAR data are shown in Figure 4. The main characteristics of the inferred slip distributions345

appear, at first glance, to be similar regardless of which type of Green’s functions is used. The346

slip is concentrated in a well-resolved patch reaching 7 m in amplitude located near the center of347

our fault. Some deep slip can also be observed, particularly on the eastern side of the fault. This348

slip distribution is similar to previously published slip models for this event (e.g. Feng et al., 2015;349

Zuo et al., 2016). The main difference between the distribution of slip in the models is at depth:350

the topographic and REC models have more slip in the deeper part of the fault. The topographic351

and REC models also have slightly greater uncertainty in the deeper part of the fault.352

We can perform a more detailed analysis using Figure 4(D), which shows the marginal posterior353

Probability Density Functions (PDFs) for the subfaults selected in panels (A), (B) and (C). Overall,354

the posterior PDFs are narrow, especially in the shallowest part of the fault, because the slip is355

well resolved and restricted epistemic uncertainties are assumed. Topographic and REC PDFs356

have significant overlap, showing that their average slip values are very close. This is consistent357

with our findings in Section 3.2.1 that the REC can approach the topographic solution when the358

full dataset is used. In contrast, the PDFs which correspond to the inversion with non-topographic359

Green’s functions do not even overlap with the topographic PDFs. This means that it is not only360

the average value that differs between these two inferred models; the full posterior distributions361

are different. Therefore, we cannot find a parameter value that satisfies both results; there is362

no latitude to reconcile non-topographic and topographic results. Our results might therefore363

imply that non-topographic models are inherently wrong (within the limitations of our study),364

because they are unable to capture the parameter values imaged with topography. However, it is365

important to note that in this study, we made simplified assumptions regarding fault geometry,366

crustal structure, and epistemic uncertainties. Additionally, for this particular event, the slip367

distribution is particularly well-constrained. If more realistic model characteristics and associated368

epistemic uncertainties were assumed, this would probably increase the posterior uncertainty and369

may enable reconciliation of non-topographic and topographic results.370

Figure 5 shows the fit to the observed data using predictions from the topographic model.371

These fits are quite good, but the observations are fitted well with any of our models. Additional372
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Figure 4: Comparison of finite-fault slip models of the 2015 Gorkha earthquake inferred with the complete

dataset of GPS and InSAR data. Slip amplitudes are shown in red, and posterior standard deviations are

shown in green. White star shows the location of the epicenter.(A) Map view of average slip amplitude and

rake inferred with non-topographic Green’s functions. (B) Average slip model inferred with topographic

Green’s functions. (C) Average slip model inferred with REC Green’s functions. (D) Comparison between

posterior marginal Probability Density Functions (PDFs) of dip-slip parameters for selected subfaults.

PDF colors correspond to amplitude of the average model. Offsets between average models are shown as

a percentage of slip amplitude. Plots of posterior PDFs are truncated between 0 and 7 m to simplify the

visualization. 16
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Figure 5: Fit to the observations for the topographic model of the 2015 Gorkha earthquake. (A) Observed

and predicted static GPS offsets shown in map view. Observed horizontal surface displacements are in

gray with 95% confidence ellipses, and predicted displacements are in blue with 95% confidence ellipses.

Vertical displacements are color-coded with color-scale truncated at (-50 cm, 50 cm). The inner circle

represents the data and the outer circle represents predicted displacements. (B) and (C), respectively:

Observed and predicted surface displacement in the line of sight of the ALOS 2 descending interferogram.

(D) and (E), respectively: Observed and predicted surface displacement in the line of sight of the Sentinel

1 ascending interferogram. The fault trace is represented as a gray line, and the epicenter as a white star.
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Figure 6: Comparison of finite-fault slip models of the 2015 Gorkha event estimated using the GPS-only

dataset. Slip amplitudes are shown in red, and posterior standard deviations are shown in green. White

star shows the location of the epicenter. (A) Average slip model inferred with non-topographic Green’s

functions. (B) Average slip model inferred with topographic Green’s functions. (C) Comparison between

posterior marginal Probability Density Functions (PDFs) of dip-slip parameters for selected subfaults.

PDF colors correspond to amplitude of the average model. Offsets between average models are shown as

a percentage of slip amplitude. Plots of posterior PDFs are truncated between 0 and 7 m to simplify the

visualization.

figures can be found in the Supplementary Material: Figure S9 shows the fit to the GPS data, and373

Figures S10, S11 and S12 show the fits to the InSAR data for the non-topographic, topographic374

and REC models, respectively. Accounting for topography does not significantly improve the fit375

to the observed data.376

3.2.3. Slip estimates with GPS data only377

Figure 6 shows that when only GPS data are used, inversions using Green’s functions with378

and without topography yield noticeably different slip distributions. The differences are especially379

pronounced in the center of the fault, where average slip is 1.5 m greater for the topographic380

model, and in the deepest part of the fault, which lies beneath the largest topographic variations.381

Given the results of our synthetic tests, we expect that the two high amplitude patches seen in the382

topographic model (Figure 6(B)) are probably of lesser amplitude. The selected posterior marginal383

Probability Density Functions (PDFs) shown in Figure 6(C) are very broad, and the PDFs from384
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the two inversions overlap significantly. As expected, the slip is thus less constrained than with385

the full dataset, so the posterior uncertainty is much greater, even with a coarser discretization of386

the fault plane. However, if the topography is accounted for, the location of large slip is similar387

whether the full dataset or GPS data only are used (Figure 6(B)).388

3.2.4. Conclusion for the Gorkha earthquake389

Our synthetic tests for the Gorkha event suggest that the impact of topography can depend on390

spatial resolution of slip. When the slip is well constrained by geodetic data, neglecting topography391

will lead to incorrect slip estimates where topographic gradients are large, but with limited biases392

due to the great data constraints. Only incorporating topography will yield correct results. Where393

topographic variations are mild, estimates are correct whether topography is accounted for or not.394

On the other hand, when the slip is poorly constrained (GPS only), neglecting topography has a395

large impact on the inferred slip distribution. In this case, the REC approximation is not sufficient.396

In our inversions with real data, topography mostly impacts the amplitude of the main slip397

patch and the mid-crustal part of the fault, where larger slip values are imaged. The topographic398

effect could thus explain why there is not yet a consensus on the mid-crustal geometry of the Main399

Himalayan Thrust (see references in Section 3.1.3).400

Altogether, our results suggest that accounting for topography is necessary when topographic401

variations are significant, even if good data coverage can limit the biases induced by neglecting402

topography.403

The Gorkha earthquake is an unusual type of dip-slip event with a very shallow dip angle and404

good data coverage directly above the fault plane. Our preferred slip model thus does not vary405

much when topography is accounted for, because most of the slip is located where topographic406

gradients are low and data are informative.407

This type of good data coverage generally does not exist for subduction events, where the408

greatest amount of slip often occurs several tens of kilometers away from the coast, while all409

observations are on land, and at very different elevations from the trench (up to 6 km in some410

cases). In the following section, we investigate the 2010 Mw8.8 Maule, Chile, earthquake to411

determine whether these results hold for a subduction setting.412

4. A subduction megathrust test case: the Mw8.8 2010 Maule, Chile, earthquake413

The second earthquake that we investigate is the Mw8.8 2010 Maule, Chile earthquake. This414

event occurred at the interface between the Nazca and South-American plates, within a region415

previously recognized as a seismic gap (e.g., Comte et al., 1986; Nishenko, 1991; Ruegg et al.,416

19



2009; Madariaga et al., 2010). The slip distribution of this event was studied using geodetic,417

seismic and/or tsunami data (e.g., Delouis et al., 2010; Vigny et al., 2011; Lay, 2011; Lin et al.,418

2013; Yue et al., 2014; Yoshimoto et al., 2016).419

Our choice of the Maule event was guided by the fact that it is a major and well studied420

event. It is also located on a subduction zone with a intermediate width (distance from the coast421

to the trench) of about 100 km. In the most favorable cases, like the Costa Rica and Sumatra422

subductions, this distance can be reduced to 20 to 30 km, while in cases like Tohoku/North Japan,423

it is closer to 200 km.424

The Maule region, and subductions zones in general, differ from the Gorkha case in three425

critical ways. First, there are no near-field observations to constrain the shallow slip because it426

usually occurs far from the coast. Imaging slip on the fault requires sampling the gradient of the427

surface deformation, but in cases like Maule, the distance between parts of the fault and some428

observations can be greater than 200 km. The second major difference is that all data are on429

one side of the fault (landward) and some distance away from it, thus only covering a fraction430

of the surface deformation field. Any epistemic error will thus appear as a systematic bias in431

the Green’s functions and is more likely to distort the model space. The third major difference432

is that observations are spread over two major topography domains, the coastal plain and the433

Andes mountain range (Figure 1). For both Gorkha and Maule, there are major short-wavelength434

topographic variations (40◦ slopes over distances of a few km), but a good data coverage across435

these variations might limit their impact on estimated slip, even if topography is not accounted436

for in the Green’s functions.437

The 2010 Maule earthquake has been intensively studied, and its rupture has been consistently438

modeled as bilateral, extending over 500 km along strike. Most of the inferred rupture models439

show two main slip patches located around longitudes of 35◦N and 37◦N, with the northern-most440

patch having higher slip amplitudes. Since the available geodetic data are located onshore, on one441

side of the rupture and far from the trench, derived rupture characteristics are poorly resolved near442

the trench. This lack of model resolution may explain why most geodetic studies find that the443

rupture did not reach the shallowest parts of the fault (e.g., Tong et al., 2010; Pollitz et al., 2011;444

Vigny et al., 2011; Lin et al., 2013) when direct (Maksymowicz et al., 2017) and indirect (Sladen445

and Trevisan, 2018) observations indicate the opposite. One exception to these geodetic models is446

the one of Moreno et al. (2012), which imaged a northern slip patch reaching the trench with 5 m447

amplitude. Conversely, most studies using seismic data do image moderate slip amplitudes (6-10448

m) at the trench (e.g., Delouis et al., 2010; Lay et al., 2010; Koper et al., 2012; Ruiz et al., 2012).449

This is also supported by deep ocean tsunami data, which are located offshore and on the other450
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side of the rupture, and can provide better resolution at the trench (Yue et al., 2014; Yoshimoto451

et al., 2016). Earlier coseismic slip models relying on these tsunami data were probably biased452

by the fact that they did not consider long wavelength dispersion (e.g., Tsai et al., 2013; Watada453

et al., 2014; Yue et al., 2014).454

Most of the published slip models for the Maule event do not account for the effects of topog-455

raphy and bathymetry. Moreno et al. (2012) did account for these effects using a spherical finite456

element model, and they imaged slip near the trench using geodetic data only. Would this mean457

that Green’s functions with topography can increase the accuracy of slip models near the trench?458

In the following section, we will investigate the effects of topography and bathymetry on inferred459

slip distributions of the 2010 Maule earthquake.460

4.1. Data and Forward Model461

4.1.1. Data462

Although there are GPS and InSAR data available for the Maule earthquake, we choose to rely463

on GPS data only for the sake of simplicity and because of the great coverage already provided.464

The results of Moreno et al. (2012) suggest that although adding InSAR data to the inversion465

procedure improves the calculated spatial resolution at the trench by 15-20%, it does not lead to466

a change in the inferred slip model. Our data consists of 53 static daily offsets processed by Vigny467

et al. (2011), and continuous GPS and survey sites processed by Lin et al. (2013).468

4.1.2. Crustal domain parameters469

Our model domain extends from -75.0◦E to -68.5◦E and -40.3◦N to -31.5◦N. The mesh measures470

approximately 553× 958× 136 km and has a mesh spacing of 6 km, for a total of 318400 elements.471

A single forward calculation with this mesh runs on 40 processors in approximately 7.5 minutes.472

An image of the mesh is shown in Figure S13. The model domain has a Poisson’s ratio of 0.25 and473

Young’s modulus of 100.0 GPa. These are the material properties used for the homogeneous model474

of Chile in Langer et al. (2019). This mesh was only used to generate the Green’s functions with475

topography. For the Green’s functions without topography, we used the homogeneous half-space476

solution at 0 km elevation.477

4.1.3. Geometry of the assumed fault478

The portion of the slab that ruptured during the Maule earthquake can be approximated as a479

planar surface, with the exception of a change in strike at around 34◦S (Hayes et al., 2018). We480

chose to assume a planar fault geometry. Given that our models have almost no inferred slip in the481

northernmost part of the fault (see Figure S19 of the Supplementary Material), this approximation482
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might not affect our slip estimates. Our fault is 570 km long and 240 km wide, with a strike of483

198◦ and a dip of 18◦. Since the slip is very poorly constrained near the trench, we experimented484

with two different fault parameterizations. The first one has homogeneous subfaults measuring485

43.8 km along strike and 24 km along dip, and in the other parameterization, the two shallowest486

subfault rows have been merged into 8 bigger subfaults measuring 81.4 × 48 km. For all subfaults,487

we use 16900 moment-density tensor patches per subfault when calculating topographic Green’s488

functions with SPECFEM-X. The first parameterization has extremely poor model resolution, so489

in the main text, we only present the results inferred with the second parameterization. The fault490

geometry parameters are detailed in Table 5 of the Supplementary Material.491

4.1.4. Other assumed prior information492

We perform our static slip estimation as previously detailed in Section 2.3. We specify a zero-493

mean Gaussian prior p(m) = N (-2 m, 2 m) on the strike-slip component, since we assume that, on494

average, the slip direction is along dip. For the dip-slip component, we consider each possible value495

of displacement equally likely if it positive and does not exceed 60 m of normal slip: p(m) = U(0 m,496

60 m). We account for the data uncertainty and for the uncertainty due to our a priori assumed497

fault geometry (Ragon et al., 2018, 2019b). We assume conservative uncertainty values of (-2◦, 2◦)498

around the prior value for the fault dip and (0 km, 2 km) for the fault position.499

4.2. Results500

We will first present the results of synthetic tests, which enable us to analyze the impact of501

topography on slip estimates without contamination from assumptions made when calculating502

Green’s functions and from data errors. Then we will examine the results of our slip estimates for503

the Maule earthquake to determine whether Green’s functions with topography can impact slip504

distribution, particularly near the trench.505

4.2.1. Synthetic Tests506

Our target model for the synthetic tests, shown in Figure 7A, consists of five ∼ 80 × 48 km507

pure dip-slip patches of 20 m amplitude. These slip patches are located near the trench and508

at intermediate depth. Using the fault geometry specified in Section 4.1.3, we compute surface509

displacements due to our target model at the data locations in a topographic domain. We then510

solve for the slip distribution using these synthetic data and the same fault geometry and crustal511

structure that were used to generate the data. The resulting slip models found using Green’s512

functions without topography, with the receiver elevation correction, and with topography are513

shown in Figures 7B,C, and D, respectively. One set of tests is performed with noise-free data and514
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presented in the main text. For another set of tests, presented in the Supplementary Material, we515

add white noise and spatially correlated noise (with a Gaussian covariance matrix of variance 1516

and correlation length 10 km and 50 km) to the synthetic data, so that the noise amplitude can517

reach up to 10% of the maximum amplitude of the data. The assumed data error is the same as518

for the real dataset. We do not account for error due to uncertainty in the fault geometry, since it519

is perfectly known.520

Inversions with non-topographic and REC Green’s functions fail to capture the target slip521

model whether noise is added to the synthetic data or not (Figures 7B,C and S14). Only two522

intermediate depth slip patches are even slightly recovered, with 15 to 70% of inferred values523

within 5 m of the target, likely because those patches are located closer to the shore and are524

therefore better resolved. The accuracy is very poor near the trench: estimated slip amplitude525

is less than 3 m, and the standard deviations are low, so that 100% of inferred values fall out 5526

m of the target. Interestingly, the REC model is almost identical to the non-topographic model.527

This may be due to the poor spatial resolution at the trench, since a similar result was found with528

the GPS-only synthetic test of the Gorkha event (Figure 3H). An additional factor may be the529

steepness of the trench; Williams and Wadge (2000) showed that the REC does not work when530

topographic gradients are large. This result is also consistent with the findings of Langer et al.531

(2019) that lowering the surface of a flat mesh to the elevation of the seafloor does not allow one532

to capture the forward modelling result found with a topographic mesh for the Maule earthquake.533

In contrast, the use of topographic Green’s functions improves the recovery of the target model534

(Figures 7D and S14). The two intermediate depth patches that were somewhat recovered by the535

non-topographic and REC models are well-estimated in the topographic model, with almost 100%536

of inferred values within 5 m of the target, and the northernmost intermediate depth slip patch537

is retrieved too, although with a larger posterior uncertainty, so that more than 15% of inferred538

parameters are less than 5 m away from the target value. Near the trench, we infer large slip539

amplitudes with large standard deviations reaching up to 75% of the slip amplitude, from 30% to540

65% of inferred parameters being within 5 m of the non-zero target. The two patches with the541

highest slip amplitudes and relatively low posterior uncertainties match the target slip patches.542

However, we also infer large amplitudes for neighboring subfaults, possibly because the information543

carried by the topographic Green’s functions is too weak to differentiate the target patches from544

the neighboring subfaults. But this implies that the information brought by the topography allows545

us to infer that some slip was shallow. Note that adding realistic noise to the data leads to546

poorer estimates, which nonetheless remain closer to the target model than when no topography547

is accounted for, especially when considering the posterior uncertainty of inferred parameters548
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(Figure S14). To get rid of the possible correlation between slip patches, we also perform some549

tests with independent patches. With only two near-trench target slip patches (Figure S16), we find550

that only introducing topography allows us to recover the target model reasonably well, although551

its amplitude is overestimated where the spatial resolution is correct, and underestimated to the552

north. Similarly, with only two mid-crustal target slip patches (Figure S17), topographic Green’s553

functions do a better job at recovering the target model, but in this case, the non-topographic slip554

model is close to the target model too. This is probably because the topographic gradients are555

more mild in this mid-crustal location.556

The synthetic data are explained well by the predictions of all of our models, whether topog-557

raphy is accounted for or not, and whether noise is added or not (Figures S18 and S15). However,558

only the topographic slip model can recover the synthetic secondary zone of uplift, corresponding559

to ∼20 cm of upward surface displacement located east of 72◦W.560

The results of these synthetic tests are similar to our findings for the Gorkha event: Green’s561

functions without topography are unable to recover target slip where topographic variations are562

large, and in particular where spatial resolution is low (here, the northern part and at the trench),563

even when the receiver elevation correction is used. When Green’s functions with topography are564

used, the accuracy of the slip model is improved, regardless of the level of data coverage.565

4.2.2. Slip Estimates566

Using the real data from the 2010 Maule event, we now invert for slip models using non-567

topographic, REC and topographic Green’s functions. The inferred slip models, shown in Figure 8,568

are all characterized by two main high-amplitude slip patches located at intermediate depth, around569

35◦ S and 37◦ S. This slip distribution is similar to the ones found by previous studies discussed570

in Section 4. The non-topographic and REC models (Figures 8A,B) are nearly identical, with571

large slip amplitudes of up to 20 m near the trench in the southern half of the fault, and some572

slip estimated on the deepest row. The slip appears well constrained in the southern half of the573

fault, with reasonably small standard deviations (Figure 8D, subfaults (1) and (3)). Posterior574

uncertainty is higher for the northern half of the fault, with larger or Dirichlet-shaped posterior575

PDFs (Figure 8D, subfaults (2), (5) and (6)).576

The topographic slip model (Figure 8C) is very different from the two other results. The two577

intermediate-depth high slip patches still have large amplitudes (up to 20 m), but there are also578

intermediate-depth subfaults with moderate slip amplitudes in between those two patches. The579

most striking difference is that only the northern slip patch reaches the trench, with up to 17 m580

of slip, and very small slip amplitudes are inferred near the trench in the southern half of the581
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Figure 8: Comparison of finite-fault slip models of the 2010 Maule earthquake. Slip amplitudes are shown

in red and posterior standard deviations for each slip model are shown in green. (A) Average slip ampli-

tude and rake inferred with non-topographic Green’s functions. (B) Average slip model inferred with REC

Green’s functions. (C) Average slip model inferred with topographic Green’s functions. (D) Comparison

between posterior marginal Probability Density Functions (PDFs) of dip-slip parameters for selected sub-

faults. PDF colors correspond to amplitude of the average model. Offsets between average models are

shown as a percentage of slip amplitude. Plots of the posterior PDFs are truncated between 0 and 60 m

to simplify the visualization.
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fault. Overall, posterior uncertainties (Figure 8D) are larger, and can often be greater than 50%582

of the slip amplitude. Given the results of the synthetic tests presented in the previous section,583

the topographic slip model is the only one able to provide meaningful results, even if associated584

with greater uncertainties. We note that this model is also coherent with the tsunami data (e.g.,585

Yue et al., 2014; Yoshimoto et al., 2016), outer-rise aftershock distribution (Sladen and Trevisan,586

2018) and a differential bathymetry study (Maksymowicz et al., 2017). Again, from the synthetic587

tests, we can suggest the medium slip amplitudes (5-10 m) along the trench are probably artefacts588

(also because the mean of the Dirichlet shape of the PDFs does not reflect the posterior mean),589

but the high amplitude patch (∼17 m) imaged above the northern patch is likely realistic.590

The slip model with the receiver elevation correction shows behavior that is consistent with the591

results of our synthetic tests. Average slip values for the REC model are approximately halfway592

in between average non-topographic and topographic slip values for intermediate depth subfaults593

(Figure 8D, subfaults (3) to (6)), but is very close to the non-topographic slip values for the near-594

trench subfaults (Figure 8D, subfaults (1) and (2)). This suggests that the REC only improves595

our estimates where spatial resolution is large enough, and is not effective at the trench where596

resolution is too low.597

As discussed in Section 4.1.3, we performed similar slip inversions using a fault parameterized598

with homogeneous subfaults. This fault parametrization also yields very different results with599

topographic and non-topographic Green’s functions, particularly near the trench where average600

slip reaches 20 m of amplitude for the non-topographic and REC models, but is close to 0 m in601

the topographic model (Figure S19 of the Supplementary Material). However, the near-trench602

posterior PDFs for the non-topographic and REC models are close to the uniform distribution603

(Figure S19D, subfaults (2) and (3) in particular), implying that the model resolution at the604

trench is so poor that the results are not meaningful. However, the resolution is better in the605

topographic model.606

The fit of our model predictions to the data are shown in Figures 9 (for topographic and607

non-topographic Green’s functions) and S20 (for REC Green’s functions). Vertical and horizon-608

tal displacements appear to be well explained by both non-topographic and topographic models.609

There are two West-East rows of stations that can be used to investigate the fit in more detail.610

The predicted horizontal displacements are similar for both the topographic and non-topographic611

models, and both provide a good fit to the observations within the data errors and the posterior612

uncertainties of the predictions (Figure 9). However, the non-topographic model has difficulty613

explaining the complex shape and amplitude of uplift near the shoreline for both profiles: data614

points fall outside the prediction zone, which is shown as a gray area around the profiles. In con-615
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trast, the topographic model provides a better fit to the observed vertical surface displacement,616

especially near the coast. Note the large difference between the prediction uncertainties for the617

vertical displacements in the topographic and non-topographic profiles. This is because posterior618

slip uncertainty is greater in the topographic model, especially at shallow and intermediate depths.619

4.2.3. Conclusion for the Maule earthquake620

Our investigation of the Maule event indicates that the use of topographic Green’s functions621

significantly affects slip estimates. Our synthetic tests demonstrate that topography is required622

to accurately infer slip distribution where gradients are steep, particularly if spatial resolution is623

low, e.g. at the trench and in the northernmost region of the fault. In our inversions with real624

data, only the topographic Green’s functions allow us to explain some features of the vertical625

displacement data. Therefore, both the synthetic tests and the better fit to the observations seem626

to indicate that the average topographic slip model represents a better estimate of coseismic slip627

of the Maule event, even if the associated posterior uncertainties are larger. Our results also628

demonstrate that the receiver elevation correction is not a sufficient proxy for topographic Green’s629

functions, especially for areas where slip is poorly constrained and topographic gradients are large,630

such as near the trench.631

5. Discussion and Conclusions632

Topographic variations are rarely accounted for in finite fault slip inversions, even when earth-633

quakes take place in regions with extreme topography. Previous research (e.g., Hsu et al., 2011;634

Langer et al., 2019) showed that topography can have a significant effect on estimated surface635

displacements. In this study, we extended that work by assessing the effect of topography on static636

earthquake slip inversions.637

With SPECFEM-X, a quasi-static spectral element software package, we are able to efficiently638

compute Green’s functions in a topographic domain. We used SPECFEM-X to investigate the639

impact of topography on two earthquakes that represent two different types of topography and640

geodetic data coverage: the Mw7.8 2015 Gorkha and Mw8.8 2010 Maule earthquakes. The study641

of the Gorkha event is motivated by its exceptionally strong observational constraints and the fact642

that the highest amplitude slip occurs away from the greatest topographic gradients. On the other643

hand, the Maule earthquake is characterized by a large amount of slip occurring away from the644

data (especially near the trench), where topographic gradients are very high. The slip of the Maule645

event is also more poorly constrained because data are only available on the landward side of the646

fault.647
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For these two events, we compared slip models estimated with a Bayesian sampling approach648

using Green’s functions calculated with topography, without topography, and with a zeroth-order649

topographic correction. We first investigated these events in a synthetic framework, and then we650

used the real datasets.651

5.1. Impact of topography on slip models652

Our synthetic tests for these earthquakes demonstrate that neglecting topography where gra-653

dients are large leads to incorrect slip estimates. In most cases, the target slip model is not even654

among the possible models recovered in an inversion with non-topographic Green’s functions. How-655

ever, if the observational constraints are very good (which is only true in rare cases), the biases656

introduced by the lack of topography might be limited. For instance, the locations of mid-crustal657

slip patches on the Main Himalayan Thrust are well-resolved, though the amplitudes are locally658

off by up to 80%. In contrast, where data coverage is less, artifacts caused by the absence of to-659

pography are more significant. For instance, when neglecting topography, we are unable to recover660

large slip amplitudes (20 m) at the trench for the Maule subduction event.661

For both earthquakes, the use of Green’s functions with topography produced different slip662

distributions. For the Gorkha event, this difference was relatively minor when the full dataset663

was used, probably because most of the slip is located where topographic gradients are mild. The664

impact of topography is more pronounced in slip models of the Maule earthquake. Accounting for665

topography leads to slip amplitudes and distributions that differ for every region of the fault, and666

in particular near the trench, where data are uninformative and topographic gradients are large.667

Interestingly, we also note that introducing topographic Green’s functions leads to larger posterior668

uncertainties where the observational constraints are low. This is probably because assuming a669

more realistic forward model broadens the range of possible solutions, which can become even670

larger if the slip is poorly constrained. In contrast, assuming an incorrect forward model (without671

topography) leads to an incorrect sampling of the solution space and overfitting of the observations.672

For both events, topographic Green’s functions allow us to improve the consistency of the673

predictions with the observations. In particular, we find that topographic results are the only ones674

able to explain complexities in the surface uplift for the Maule event.675

Given the results of our synthetic tests and the improved fit to observations, we may infer676

that slip models estimated with topographic Green’s functions probably represent more accurate677

estimates of coseismic deformation than slip models estimated without topography. We note,678

however, that the forward model assumptions that we made, such as planar fault geometry and679

homogeneous crustal structure, and the other prior choices that were made in this study, such as680
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our parameterization of the forward problem, may also affect our estimates, so further study is681

required to determine the effect of these factors.682

5.2. Effectiveness of the receiver elevation correction683

The receiver elevation correction (REC) accounts for variations in distance between the fault684

and the surface, but neglects the shape of the topographic surface (Williams and Wadge, 2000).685

It was previously known that the REC fails when topographic gradients are large (Williams and686

Wadge, 2000), as they are in the Maule region. In this study, we additionally found that spatial687

resolution of slip (largely controlled by data coverage) also plays a role in determining when the688

REC will be effective. Using both synthetic tests and analysis of real events, we showed that the689

REC only reduces a small fraction of the biases introduced by neglecting topography. The REC is690

not sufficient even when those biases are limited, and when the data are uninformative, the REC691

fails to recover any of the differences in the topographic model.692

In conclusion, the effect of topography on static slip models is significant, and can only some-693

times be accounted for using the receiver elevation correction. Our findings suggest that, in many694

cases, it is advisable to use topographic Green’s functions when inferring slip models in regions695

with strong topographic gradients and/or poor observational constraints, such as in a subduction696

zone. In regions with excellent data coverage (e.g. InSAR data with two different lines-of-sight)697

and mild topographic variations, the REC may be used to account for topography.698

5.3. Perspectives699

Although the two examples of the Gorkha and Maule earthquakes represent two endmembers of700

topography and data coverage, they are not sufficient for a complete understanding of the impact701

of topography on static slip inversions because they both belong to the same class of earthquake702

– namely, dip-slip events that occur close to the surface on shallowly dipping faults. Additional703

research is needed to determine whether the results found in this work extend to other types of704

earthquakes and faults. Does topography still have a significant effect when deformation is mostly705

horizontal, as it is for a strike-slip fault? Furthermore, it seems intuitive that deeper earthquakes706

would sense topography less. Is there a cut-off depth below which topography can be neglected?707

What role, if any, does the dip of a fault play? How extreme must the topography of a region be for708

the effect to start being considered significant? Topography may be short-wavelength (many small709

structures) or long-wavelength (several large features); does the length scale of the topography710

matter when determining whether it is likely to be impactful?711

We must also remember that topography is only one aspect of 3D Earth structure. In this712

study, we chose to focus on topography because the results of a previous study (Langer et al., 2019)713
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implied that it was likely to have the greatest impact on inferred slip models of the earthquakes714

that we analyzed in this study. Topography also has the advantage of being known everywhere with715

sufficient precision to be acknowledged a priori in a routine way. In comparison, fault geometry716

and elastic structure are only known for a few areas and events. Where these properties are poorly717

known, a good approach is to characterize the associated uncertainties and include them in the718

inverse problem (e.g., Minson et al., 2013; Duputel et al., 2014; Ragon et al., 2018, 2019b). These719

effects have been investigated by a few studies (see Section 1 for a thorough review), but since720

they can take many forms, their generic impact is not yet known. More research is needed before721

we can start to determine the trade-offs between these different contributions.722

Finally, our conclusions are not restricted to coseismic deformation; topography may also af-723

fect estimates of postseismic stress relaxation, which is generally modeled by several interacting724

mechanisms, such as afterslip (e.g., Marone et al., 1991) or viscoelastic deformation in the lower725

crust or mantle (e.g., Pollitz et al., 1998; Perfettini and Avouac, 2004; Barbot and Fialko, 2010).726

Afterslip is of the same nature as coseismic deformation (slip on a fault surface) but of lower727

amplitude: it is thus constrained by less informative observations. The impact of topography on728

afterslip estimates is therefore probably even greater than for coseismic slip models. In contrast,729

viscoelastic deformation usually occurs at greater depths (e.g., Pollitz et al., 1998), so its estimates730

might be less influenced by topography.731

Additionally, topography may affect images of interseismic slip rate deficit (or kinematic cou-732

pling ratio), which is usually modeled to decipher which portions of thrust faults are likely to733

rupture and which portions slip aseismically. A megathrust is usually coupled at intermediate to734

shallow depths (e.g. Stevens and Avouac, 2015; Xue et al., 2015; Métois et al., 2016; Michel et al.,735

2019). Almeida et al. (2018a) concluded that the coupling is generally underestimated in shallow736

regions, and thus where spatial resolution is low and topographic gradients are high. Yet, megath-737

rust coupling is usually modeled using the homogeneous elastic half-space approximation (e.g.738

Chlieh et al., 2011; Loveless and Meade, 2016; Nocquet et al., 2017; Dal Zilio et al., 2020, and739

previous citations).740

Incorporating 3D complexity would be more easily done if Green’s functions with 3D structure,741

especially topography, could be calculated automatically by SPECFEM-X with minimal input742

from the user. The main barrier towards achieving this goal is that mesh generation is a complex743

process. High-quality topographic meshes are often difficult to construct, even with the simple744

requirements of SPECFEM-X, and each mesh must be fine-tuned by hand. However, we do plan745

to share the scripts required to produce the Green’s functions used in this study on Github so that746

others may use them as a guide.747

32



In summary, we showed that neglecting topography can lead to biased estimates of slip dis-748

tribution on faults, especially in areas where topographic gradients are large. Accounting for749

topography, something which can now be done almost routinely with numerical tools such as750

SPECFEM-X, is thus an essential step towards achieving a reliable and detailed estimate of fault751

slip behavior (slip episodes or slip deficit) in region with large topographic variations.752

The meshes used to calculate Green’s functions in a topographic domain for the Gorkha and753

Maule earthquakes can be found in our repository (doi:10.5281/zenodo.3675999).754
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Elliott, J., Jolivet, R., González, P.J., Avouac, J.P., Hollingsworth, J., Searle, M.P., Stevens, V.,810

2016. Himalayan megathrust geometry and relation to topography revealed by the Gorkha811

earthquake. Nature Geoscience 9, 174–180. URL: https://doi.org/10.1038/ngeo2623.812

Feng, G., Zhu, J., Li, Z., Zhang, G., Shan, X., Zhang, L., 2015. Geodetic model of the 2015 April813

25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 aftershock estimated from InSAR and GPS814

data. Geophysical Journal International 203, 896–900. doi:10.1093/gji/ggv335.815

Galetzka, J., Melgar, D., Genrich, J.F., Geng, J., Owen, S., Lindsey, E.O., Xu, X., Bock, Y.,816

Avouac, J.P., Adhikari, L.B., Upreti, B.N., Pratt-Sitaula, B., Bhattarai, T.N., Sitaula, B.P.,817

Moore, A., Hudnut, K.W., Szeliga, W., Normandeau, J., Fend, M., Flouzat, M., Bollinger, L.,818

Shrestha, P., Koirala, B., Gautam, U., Bhatterai, M., Gupta, R., Kandel, T., Timsina, C.,819

Sapkota, S.N., Rajaure, S., Maharjan, N., 2015. Slip pulse and resonance of the Kathmandu820

basin during the 2015 Gorkha earthquake, Nepal. Science 349, 1091–1095. URL: https://821

science.sciencemag.org/content/349/6252/1091, doi:10.1126/science.aac6383.822
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Maksymowicz, A., Chadwell, C., Ruiz, J., Tréhu, A., Contreras-Reyes, E., Weinrebe, W., Dı́az-907

Naveas, J., Gibson, J., Lonsdale, P., Tryon, M., 2017. Coseismic seafloor deformation in the908

trench region during the mw8. 8 maule megathrust earthquake. Scientific reports 7, 1–8.909

Mansinha, L.a., Smylie, D., 1971. The displacement fields of inclined faults. Bulletin of the910

Seismological Society of America 61, 1433–1440.911

Marone, C.J., Scholtz, C.H., Bilham, R., 1991. On the mechanics of earthquake afterslip. Journal912

of Geophysical Research: Solid Earth 96, 8441–8452. doi:10.1029/91JB00275.913

Masterlark, T., 2003. Finite element model predictions of static deformation from disloca-914

tion sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and915

half-space assumptions. Journal of Geophysical Research: Solid Earth 108. doi:10.1029/916

2002JB002296.917

McTigue, D.F., Segall, P., 1988. Displacements and tilts from dip-slip faults and magma chambers918

beneath irregular surface topography. Geophysical Research Letters 15, 601–604. doi:10.1029/919

GL015i006p00601.920

38



Mendoza, M.M., Ghosh, A., Karplus, M.S., Klemperer, S.L., Sapkota, S.N., Adhikari, L.B.,921

Velasco, A., 2019. Duplex in the Main Himalayan Thrust illuminated by aftershocks of922

the 2015 Mw 7.8 Gorkha earthquake. Nature Geoscience URL: https://doi.org/10.1038/923

s41561-019-0474-8.924

Menke, W., 2012. Geophysical Data Analysis: Discrete Inverse Theory. Academic press.925
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